Time Series Analysis with Long Memory in View PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Time Series Analysis with Long Memory in View PDF full book. Access full book title Time Series Analysis with Long Memory in View by Uwe Hassler. Download full books in PDF and EPUB format.

Time Series Analysis with Long Memory in View

Time Series Analysis with Long Memory in View PDF Author: Uwe Hassler
Publisher: John Wiley & Sons
ISBN: 1119470285
Category : Mathematics
Languages : en
Pages : 292

Book Description
Provides a simple exposition of the basic time series material, and insights into underlying technical aspects and methods of proof Long memory time series are characterized by a strong dependence between distant events. This book introduces readers to the theory and foundations of univariate time series analysis with a focus on long memory and fractional integration, which are embedded into the general framework. It presents the general theory of time series, including some issues that are not treated in other books on time series, such as ergodicity, persistence versus memory, asymptotic properties of the periodogram, and Whittle estimation. Further chapters address the general functional central limit theory, parametric and semiparametric estimation of the long memory parameter, and locally optimal tests. Intuitive and easy to read, Time Series Analysis with Long Memory in View offers chapters that cover: Stationary Processes; Moving Averages and Linear Processes; Frequency Domain Analysis; Differencing and Integration; Fractionally Integrated Processes; Sample Means; Parametric Estimators; Semiparametric Estimators; and Testing. It also discusses further topics. This book: Offers beginning-of-chapter examples as well as end-of-chapter technical arguments and proofs Contains many new results on long memory processes which have not appeared in previous and existing textbooks Takes a basic mathematics (Calculus) approach to the topic of time series analysis with long memory Contains 25 illustrative figures as well as lists of notations and acronyms Time Series Analysis with Long Memory in View is an ideal text for first year PhD students, researchers, and practitioners in statistics, econometrics, and any application area that uses time series over a long period. It would also benefit researchers, undergraduates, and practitioners in those areas who require a rigorous introduction to time series analysis.

Time Series Analysis with Long Memory in View

Time Series Analysis with Long Memory in View PDF Author: Uwe Hassler
Publisher: John Wiley & Sons
ISBN: 1119470285
Category : Mathematics
Languages : en
Pages : 292

Book Description
Provides a simple exposition of the basic time series material, and insights into underlying technical aspects and methods of proof Long memory time series are characterized by a strong dependence between distant events. This book introduces readers to the theory and foundations of univariate time series analysis with a focus on long memory and fractional integration, which are embedded into the general framework. It presents the general theory of time series, including some issues that are not treated in other books on time series, such as ergodicity, persistence versus memory, asymptotic properties of the periodogram, and Whittle estimation. Further chapters address the general functional central limit theory, parametric and semiparametric estimation of the long memory parameter, and locally optimal tests. Intuitive and easy to read, Time Series Analysis with Long Memory in View offers chapters that cover: Stationary Processes; Moving Averages and Linear Processes; Frequency Domain Analysis; Differencing and Integration; Fractionally Integrated Processes; Sample Means; Parametric Estimators; Semiparametric Estimators; and Testing. It also discusses further topics. This book: Offers beginning-of-chapter examples as well as end-of-chapter technical arguments and proofs Contains many new results on long memory processes which have not appeared in previous and existing textbooks Takes a basic mathematics (Calculus) approach to the topic of time series analysis with long memory Contains 25 illustrative figures as well as lists of notations and acronyms Time Series Analysis with Long Memory in View is an ideal text for first year PhD students, researchers, and practitioners in statistics, econometrics, and any application area that uses time series over a long period. It would also benefit researchers, undergraduates, and practitioners in those areas who require a rigorous introduction to time series analysis.

Long Memory in Economics

Long Memory in Economics PDF Author: Gilles Teyssière
Publisher: Springer Science & Business Media
ISBN: 3540346252
Category : Business & Economics
Languages : en
Pages : 394

Book Description
Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.

Time Series with Long Memory

Time Series with Long Memory PDF Author: Peter M. Robinson
Publisher: Advanced Texts in Econometrics
ISBN: 9780199257300
Category : Business & Economics
Languages : en
Pages : 396

Book Description
Long memory time series are characterized by a strong dependence between distant events.

Long-Memory Processes

Long-Memory Processes PDF Author: Jan Beran
Publisher: Springer Science & Business Media
ISBN: 3642355129
Category : Mathematics
Languages : en
Pages : 892

Book Description
Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.

Long-Range Dependence and Self-Similarity

Long-Range Dependence and Self-Similarity PDF Author: Vladas Pipiras
Publisher: Cambridge University Press
ISBN: 1107039460
Category : Business & Economics
Languages : en
Pages : 693

Book Description
A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.

Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models PDF Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634

Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Theory and Applications of Long-Range Dependence

Theory and Applications of Long-Range Dependence PDF Author: Paul Doukhan
Publisher: Springer Science & Business Media
ISBN: 9780817641689
Category : Mathematics
Languages : en
Pages : 744

Book Description
The area of data analysis has been greatly affected by our computer age. For example, the issue of collecting and storing huge data sets has become quite simplified and has greatly affected such areas as finance and telecommunications. Even non-specialists try to analyze data sets and ask basic questions about their structure. One such question is whether one observes some type of invariance with respect to scale, a question that is closely related to the existence of long-range dependence in the data. This important topic of long-range dependence is the focus of this unique work, written by a number of specialists on the subject. The topics selected should give a good overview from the probabilistic and statistical perspective. Included will be articles on fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, and prediction for long-range dependence sequences. For those graduate students and researchers who want to use the methodology and need to know the "tricks of the trade," there will be a special section called "Mathematical Techniques." Topics in the first part of the book are covered from probabilistic and statistical perspectives and include fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, prediction for long-range dependence sequences. The reader is referred to more detailed proofs if already found in the literature. The last part of the book is devoted to applications in the areas of simulation, estimation and wavelet techniques, traffic in computer networks, econometry and finance, multifractal models, and hydrology. Diagrams and illustrations enhance the presentation. Each article begins with introductory background material and is accessible to mathematicians, a variety of practitioners, and graduate students. The work serves as a state-of-the art reference or graduate seminar text.

Multifractal Volatility

Multifractal Volatility PDF Author: Laurent E. Calvet
Publisher: Academic Press
ISBN: 0080559964
Category : Business & Economics
Languages : en
Pages : 273

Book Description
Calvet and Fisher present a powerful, new technique for volatility forecasting that draws on insights from the use of multifractals in the natural sciences and mathematics and provides a unified treatment of the use of multifractal techniques in finance. A large existing literature (e.g., Engle, 1982; Rossi, 1995) models volatility as an average of past shocks, possibly with a noise component. This approach often has difficulty capturing sharp discontinuities and large changes in financial volatility. Their research has shown the advantages of modelling volatility as subject to abrupt regime changes of heterogeneous durations. Using the intuition that some economic phenomena are long-lasting while others are more transient, they permit regimes to have varying degrees of persistence. By drawing on insights from the use of multifractals in the natural sciences and mathematics, they show how to construct high-dimensional regime-switching models that are easy to estimate, and substantially outperform some of the best traditional forecasting models such as GARCH. The goal of Multifractal Volatility is to popularize the approach by presenting these exciting new developments to a wider audience. They emphasize both theoretical and empirical applications, beginning with a style that is easily accessible and intuitive in early chapters, and extending to the most rigorous continuous-time and equilibrium pricing formulations in final chapters. - Presents a powerful new technique for forecasting volatility - Leads the reader intuitively from existing volatility techniques to the frontier of research in this field by top scholars at major universities - The first comprehensive book on multifractal techniques in finance, a cutting-edge field of research

Mathematische Annalen

Mathematische Annalen PDF Author: Alfred Clebsch
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages :

Book Description


Modeling and Estimation of Long-memory in Stochastic Volatility

Modeling and Estimation of Long-memory in Stochastic Volatility PDF Author: Nazibrola Lordkipanidze
Publisher:
ISBN:
Category :
Languages : en
Pages : 296

Book Description