Author: Nick Herbert
Publisher: Anchor
ISBN: 030780674X
Category : Science
Languages : en
Pages : 290
Book Description
This clearly explained layman's introduction to quantum physics is an accessible excursion into metaphysics and the meaning of reality. Herbert exposes the quantum world and the scientific and philosophical controversy about its interpretation.
Quantum Reality
Author: Nick Herbert
Publisher: Anchor
ISBN: 030780674X
Category : Science
Languages : en
Pages : 290
Book Description
This clearly explained layman's introduction to quantum physics is an accessible excursion into metaphysics and the meaning of reality. Herbert exposes the quantum world and the scientific and philosophical controversy about its interpretation.
Publisher: Anchor
ISBN: 030780674X
Category : Science
Languages : en
Pages : 290
Book Description
This clearly explained layman's introduction to quantum physics is an accessible excursion into metaphysics and the meaning of reality. Herbert exposes the quantum world and the scientific and philosophical controversy about its interpretation.
Beyond the Quantum Paradox
Author: Lazar Mayants
Publisher: Taylor & Francis Group
ISBN:
Category : Games & Activities
Languages : en
Pages : 128
Book Description
Physicists and philosophers have quarrelled frequently over the meaning of quantum physics and as yet there is still no agreement - the only aspect of quantum physics which they agree with is that it is connected with probability. Beyond the Quantum Paradox attempts to explain this argument in clear, non-mathematical language. Based on Professor Mayants' work over the past twenty-five years, the book attempts to explain what quantum mechanics is all about.
Publisher: Taylor & Francis Group
ISBN:
Category : Games & Activities
Languages : en
Pages : 128
Book Description
Physicists and philosophers have quarrelled frequently over the meaning of quantum physics and as yet there is still no agreement - the only aspect of quantum physics which they agree with is that it is connected with probability. Beyond the Quantum Paradox attempts to explain this argument in clear, non-mathematical language. Based on Professor Mayants' work over the past twenty-five years, the book attempts to explain what quantum mechanics is all about.
Beyond Weird
Author: Philip Ball
Publisher: University of Chicago Press
ISBN: 022655838X
Category : Science
Languages : en
Pages : 382
Book Description
“Anyone who is not shocked by quantum theory has not understood it.” Since Niels Bohr said this many years ago, quantum mechanics has only been getting more shocking. We now realize that it’s not really telling us that “weird” things happen out of sight, on the tiniest level, in the atomic world: rather, everything is quantum. But if quantum mechanics is correct, what seems obvious and right in our everyday world is built on foundations that don’t seem obvious or right at all—or even possible. An exhilarating tour of the contemporary quantum landscape, Beyond Weird is a book about what quantum physics really means—and what it doesn’t. Science writer Philip Ball offers an up-to-date, accessible account of the quest to come to grips with the most fundamental theory of physical reality, and to explain how its counterintuitive principles underpin the world we experience. Over the past decade it has become clear that quantum physics is less a theory about particles and waves, uncertainty and fuzziness, than a theory about information and knowledge—about what can be known, and how we can know it. Discoveries and experiments over the past few decades have called into question the meanings and limits of space and time, cause and effect, and, ultimately, of knowledge itself. The quantum world Ball shows us isn’t a different world. It is our world, and if anything deserves to be called “weird,” it’s us.
Publisher: University of Chicago Press
ISBN: 022655838X
Category : Science
Languages : en
Pages : 382
Book Description
“Anyone who is not shocked by quantum theory has not understood it.” Since Niels Bohr said this many years ago, quantum mechanics has only been getting more shocking. We now realize that it’s not really telling us that “weird” things happen out of sight, on the tiniest level, in the atomic world: rather, everything is quantum. But if quantum mechanics is correct, what seems obvious and right in our everyday world is built on foundations that don’t seem obvious or right at all—or even possible. An exhilarating tour of the contemporary quantum landscape, Beyond Weird is a book about what quantum physics really means—and what it doesn’t. Science writer Philip Ball offers an up-to-date, accessible account of the quest to come to grips with the most fundamental theory of physical reality, and to explain how its counterintuitive principles underpin the world we experience. Over the past decade it has become clear that quantum physics is less a theory about particles and waves, uncertainty and fuzziness, than a theory about information and knowledge—about what can be known, and how we can know it. Discoveries and experiments over the past few decades have called into question the meanings and limits of space and time, cause and effect, and, ultimately, of knowledge itself. The quantum world Ball shows us isn’t a different world. It is our world, and if anything deserves to be called “weird,” it’s us.
Beyond the Quantum
Author: Theo M. Nieuwenhuizen
Publisher: World Scientific
ISBN: 9812771182
Category : Science
Languages : en
Pages : 399
Book Description
Already Einstein could never see quantum mechanics as a complete theory. Nowadays, many researchers, including 't Hooft, view quantum mechanics as a statistical description of some underlying reality. The workshop Beyond the Quantum, organized in Spring 2006 at the Lorentz Center in Leiden, The Netherlands, was one of the first meetings completely devoted to physics that may need an explanation beyond quantum mechanics. A broad variety of subjects was covered. The present book reflects this. Sample Chapter(s). Chapter 1: The Mathematical Basis for Deterministic Quantum Mechanics (267 KB). Contents: Introductions: The Mathematical Basis for Deterministic Quantum Mechanics (G 't Hooft); What Did We Learn from Quantum Gravity? (A Ashtekar); BoseOCoEinstein Condensates and EPR Quantum Non-Locality (F Lalo1/2); The Quantum Measurement Process: Lessons from an Exactly Solvable Model (A E Allahverdyan et al.); Quantum Mechanics and Quantum Information: POVMs: A Small but Important Step Beyond Standard Quantum Mechanics (W M de Muynck); State Reduction by Measurements with a Null Result (G Nienhuis); Solving Open Questions in the BoseOCoEinstein Condensation of an Ideal Gas via a Hybrid Mixture of Laser and Statistical Physics (M Kim et al.); Long Distance Correlations and Bell Inequalities: Fair Sampling vs No-Signalling Principle in EPR Experiments (G Adenier & A Yu Khrennikov); Mathematical Foundations: Where the Mathematical Structure of Quantum Mechanics Comes From (G M D'Ariano); Phase Space Description of Quantum Mechanics and Non-Commutative Geometry: Wigner-Moyal and Bohm in a Wider Context (B J Hiley); Quantum Mechanics as Simple Algorithm for Approximation of Classical Integrals (A Yu Khrennikov); Stochastic Electrodynamics: Some Quantum Experiments from the Point of View of Stochastic Electrodynamics (V apicka et al.); Models for the Electron: Rotating Hopf-Kinks: Oscillators in the Sense of de Broglie (U Enz); The Electron and the Neutrino as Solitos in Classical Electromagnetism (Th M Nieuwenhuizen); Philosophical Considerations; Round Table; and other papers. Readership: Postgraduates and researchers in quantum physics."
Publisher: World Scientific
ISBN: 9812771182
Category : Science
Languages : en
Pages : 399
Book Description
Already Einstein could never see quantum mechanics as a complete theory. Nowadays, many researchers, including 't Hooft, view quantum mechanics as a statistical description of some underlying reality. The workshop Beyond the Quantum, organized in Spring 2006 at the Lorentz Center in Leiden, The Netherlands, was one of the first meetings completely devoted to physics that may need an explanation beyond quantum mechanics. A broad variety of subjects was covered. The present book reflects this. Sample Chapter(s). Chapter 1: The Mathematical Basis for Deterministic Quantum Mechanics (267 KB). Contents: Introductions: The Mathematical Basis for Deterministic Quantum Mechanics (G 't Hooft); What Did We Learn from Quantum Gravity? (A Ashtekar); BoseOCoEinstein Condensates and EPR Quantum Non-Locality (F Lalo1/2); The Quantum Measurement Process: Lessons from an Exactly Solvable Model (A E Allahverdyan et al.); Quantum Mechanics and Quantum Information: POVMs: A Small but Important Step Beyond Standard Quantum Mechanics (W M de Muynck); State Reduction by Measurements with a Null Result (G Nienhuis); Solving Open Questions in the BoseOCoEinstein Condensation of an Ideal Gas via a Hybrid Mixture of Laser and Statistical Physics (M Kim et al.); Long Distance Correlations and Bell Inequalities: Fair Sampling vs No-Signalling Principle in EPR Experiments (G Adenier & A Yu Khrennikov); Mathematical Foundations: Where the Mathematical Structure of Quantum Mechanics Comes From (G M D'Ariano); Phase Space Description of Quantum Mechanics and Non-Commutative Geometry: Wigner-Moyal and Bohm in a Wider Context (B J Hiley); Quantum Mechanics as Simple Algorithm for Approximation of Classical Integrals (A Yu Khrennikov); Stochastic Electrodynamics: Some Quantum Experiments from the Point of View of Stochastic Electrodynamics (V apicka et al.); Models for the Electron: Rotating Hopf-Kinks: Oscillators in the Sense of de Broglie (U Enz); The Electron and the Neutrino as Solitos in Classical Electromagnetism (Th M Nieuwenhuizen); Philosophical Considerations; Round Table; and other papers. Readership: Postgraduates and researchers in quantum physics."
Einstein and the Quantum
Author: A. Douglas Stone
Publisher: Princeton University Press
ISBN: 0691168563
Category : Science
Languages : en
Pages : 344
Book Description
The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrödinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.
Publisher: Princeton University Press
ISBN: 0691168563
Category : Science
Languages : en
Pages : 344
Book Description
The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrödinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.
Quantum Non-Locality and Relativity
Author: Tim Maudlin
Publisher: John Wiley & Sons
ISBN: 1444331264
Category : Science
Languages : en
Pages : 315
Book Description
The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell’s Theorem and its implication for the relativistic account of space and time Discusses Roderich Tumiulka’s explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell’s inequality. Discusses the "Free Will Theorem" of John Conway and Simon Kochen Introduces philosophers to the relevant physics and demonstrates how philosophical analysis can help inform physics
Publisher: John Wiley & Sons
ISBN: 1444331264
Category : Science
Languages : en
Pages : 315
Book Description
The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell’s Theorem and its implication for the relativistic account of space and time Discusses Roderich Tumiulka’s explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell’s inequality. Discusses the "Free Will Theorem" of John Conway and Simon Kochen Introduces philosophers to the relevant physics and demonstrates how philosophical analysis can help inform physics
QBism
Author: Hans Christian von Baeyer
Publisher: Harvard University Press
ISBN: 0674545109
Category : Science
Languages : en
Pages : 268
Book Description
Measured by the accuracy of its predictions and the scope of its technological applications, quantum mechanics is one of the most successful theories in science—as well as one of the most misunderstood. The deeper meaning of quantum mechanics remains controversial almost a century after its invention. Providing a way past quantum theory’s paradoxes and puzzles, QBism offers a strikingly new interpretation that opens up for the nonspecialist reader the profound implications of quantum mechanics for how we understand and interact with the world. Short for Quantum Bayesianism, QBism adapts many of the conventional features of quantum mechanics in light of a revised understanding of probability. Bayesian probability, unlike the standard “frequentist probability,” is defined as a numerical measure of the degree of an observer’s belief that a future event will occur or that a particular proposition is true. Bayesianism’s advantages over frequentist probability are that it is applicable to singular events, its probability estimates can be updated based on acquisition of new information, and it can effortlessly include frequentist results. But perhaps most important, much of the weirdness associated with quantum theory—the idea that an atom can be in two places at once, or that signals can travel faster than the speed of light, or that Schrödinger’s cat can be simultaneously dead and alive—dissolves under the lens of QBism. Using straightforward language without equations, Hans Christian von Baeyer clarifies the meaning of quantum mechanics in a commonsense way that suggests a new approach to physics in general.
Publisher: Harvard University Press
ISBN: 0674545109
Category : Science
Languages : en
Pages : 268
Book Description
Measured by the accuracy of its predictions and the scope of its technological applications, quantum mechanics is one of the most successful theories in science—as well as one of the most misunderstood. The deeper meaning of quantum mechanics remains controversial almost a century after its invention. Providing a way past quantum theory’s paradoxes and puzzles, QBism offers a strikingly new interpretation that opens up for the nonspecialist reader the profound implications of quantum mechanics for how we understand and interact with the world. Short for Quantum Bayesianism, QBism adapts many of the conventional features of quantum mechanics in light of a revised understanding of probability. Bayesian probability, unlike the standard “frequentist probability,” is defined as a numerical measure of the degree of an observer’s belief that a future event will occur or that a particular proposition is true. Bayesianism’s advantages over frequentist probability are that it is applicable to singular events, its probability estimates can be updated based on acquisition of new information, and it can effortlessly include frequentist results. But perhaps most important, much of the weirdness associated with quantum theory—the idea that an atom can be in two places at once, or that signals can travel faster than the speed of light, or that Schrödinger’s cat can be simultaneously dead and alive—dissolves under the lens of QBism. Using straightforward language without equations, Hans Christian von Baeyer clarifies the meaning of quantum mechanics in a commonsense way that suggests a new approach to physics in general.
Quantum Enigma
Author: Bruce Rosenblum
Publisher: Oxford University Press
ISBN: 019979295X
Category : Science
Languages : en
Pages : 300
Book Description
In trying to understand the atom, physicists built quantum mechanics, the most successful theory in science and the basis of one-third of our economy. They found, to their embarrassment, that with their theory, physics encounters consciousness. Authors Bruce Rosenblum and Fred Kuttner explain all this in non-technical terms with help from some fanciful stories and anecdotes about the theory's developers. They present the quantum mystery honestly, emphasizing what is and what is not speculation. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is heatedly controversial. But every interpretation of quantum physics involves consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum mechanics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing. Readers are brought to a boundary where the particular expertise of physicists is no longer the only sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves. In the few decades since the Bell's theorem experiments established the existence of entanglement (Einstein's "spooky action"), interest in the foundations, and the mysteries, of quantum mechanics has accelerated. In recent years, physicists, philosophers, computer engineers, and even biologists have expanded our realization of the significance of quantum phenomena. This second edition includes such advances. The authors have also drawn on many responses from readers and instructors to improve the clarity of the book's explanations.
Publisher: Oxford University Press
ISBN: 019979295X
Category : Science
Languages : en
Pages : 300
Book Description
In trying to understand the atom, physicists built quantum mechanics, the most successful theory in science and the basis of one-third of our economy. They found, to their embarrassment, that with their theory, physics encounters consciousness. Authors Bruce Rosenblum and Fred Kuttner explain all this in non-technical terms with help from some fanciful stories and anecdotes about the theory's developers. They present the quantum mystery honestly, emphasizing what is and what is not speculation. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is heatedly controversial. But every interpretation of quantum physics involves consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum mechanics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing. Readers are brought to a boundary where the particular expertise of physicists is no longer the only sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves. In the few decades since the Bell's theorem experiments established the existence of entanglement (Einstein's "spooky action"), interest in the foundations, and the mysteries, of quantum mechanics has accelerated. In recent years, physicists, philosophers, computer engineers, and even biologists have expanded our realization of the significance of quantum phenomena. This second edition includes such advances. The authors have also drawn on many responses from readers and instructors to improve the clarity of the book's explanations.
Beyond Spacetime
Author: Nick Huggett
Publisher: Cambridge University Press
ISBN: 110847702X
Category : Philosophy
Languages : en
Pages : 371
Book Description
A collection of essays discussing the philosophy and foundations of quantum gravity. Written by leading philosophers and physicists in the field, chapters cover the important conceptual questions in the search for a quantum theory of gravity, and the current state of understanding among philosophers and physicists.
Publisher: Cambridge University Press
ISBN: 110847702X
Category : Philosophy
Languages : en
Pages : 371
Book Description
A collection of essays discussing the philosophy and foundations of quantum gravity. Written by leading philosophers and physicists in the field, chapters cover the important conceptual questions in the search for a quantum theory of gravity, and the current state of understanding among philosophers and physicists.
Consistent Quantum Theory
Author: Robert B. Griffiths
Publisher: Cambridge University Press
ISBN: 9780521539296
Category : Science
Languages : en
Pages : 412
Book Description
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics.
Publisher: Cambridge University Press
ISBN: 9780521539296
Category : Science
Languages : en
Pages : 412
Book Description
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics.