Author: Sabir Umarov
Publisher: World Scientific
ISBN: 9813230991
Category : Mathematics
Languages : en
Pages : 192
Book Description
The book is devoted to the fundamental relationship between three objects: a stochastic process, stochastic differential equations driven by that process and their associated Fokker-Planck-Kolmogorov equations. This book discusses wide fractional generalizations of this fundamental triple relationship, where the driving process represents a time-changed stochastic process; the Fokker-Planck-Kolmogorov equation involves time-fractional order derivatives and spatial pseudo-differential operators; and the associated stochastic differential equation describes the stochastic behavior of the solution process. It contains recent results obtained in this direction.This book is important since the latest developments in the field, including the role of driving processes and their scaling limits, the forms of corresponding stochastic differential equations, and associated FPK equations, are systematically presented. Examples and important applications to various scientific, engineering, and economics problems make the book attractive for all interested researchers, educators, and graduate students.
Beyond The Triangle: Brownian Motion, Ito Calculus, And Fokker-planck Equation - Fractional Generalizations
Author: Sabir Umarov
Publisher: World Scientific
ISBN: 9813230991
Category : Mathematics
Languages : en
Pages : 192
Book Description
The book is devoted to the fundamental relationship between three objects: a stochastic process, stochastic differential equations driven by that process and their associated Fokker-Planck-Kolmogorov equations. This book discusses wide fractional generalizations of this fundamental triple relationship, where the driving process represents a time-changed stochastic process; the Fokker-Planck-Kolmogorov equation involves time-fractional order derivatives and spatial pseudo-differential operators; and the associated stochastic differential equation describes the stochastic behavior of the solution process. It contains recent results obtained in this direction.This book is important since the latest developments in the field, including the role of driving processes and their scaling limits, the forms of corresponding stochastic differential equations, and associated FPK equations, are systematically presented. Examples and important applications to various scientific, engineering, and economics problems make the book attractive for all interested researchers, educators, and graduate students.
Publisher: World Scientific
ISBN: 9813230991
Category : Mathematics
Languages : en
Pages : 192
Book Description
The book is devoted to the fundamental relationship between three objects: a stochastic process, stochastic differential equations driven by that process and their associated Fokker-Planck-Kolmogorov equations. This book discusses wide fractional generalizations of this fundamental triple relationship, where the driving process represents a time-changed stochastic process; the Fokker-Planck-Kolmogorov equation involves time-fractional order derivatives and spatial pseudo-differential operators; and the associated stochastic differential equation describes the stochastic behavior of the solution process. It contains recent results obtained in this direction.This book is important since the latest developments in the field, including the role of driving processes and their scaling limits, the forms of corresponding stochastic differential equations, and associated FPK equations, are systematically presented. Examples and important applications to various scientific, engineering, and economics problems make the book attractive for all interested researchers, educators, and graduate students.
Brownian Motion
Author: René L. Schilling
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110307308
Category : Mathematics
Languages : en
Pages : 424
Book Description
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors’ aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110307308
Category : Mathematics
Languages : en
Pages : 424
Book Description
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors’ aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Brownian Motion
Author: Peter Mörters
Publisher: Cambridge University Press
ISBN: 1139486578
Category : Mathematics
Languages : en
Pages :
Book Description
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Publisher: Cambridge University Press
ISBN: 1139486578
Category : Mathematics
Languages : en
Pages :
Book Description
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Brownian Motion Calculus
Author: Ubbo F. Wiersema
Publisher: John Wiley & Sons
ISBN: 0470021705
Category : Business & Economics
Languages : en
Pages : 342
Book Description
BROWNIAN MOTION CALCULUS Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. The sequence of chapters starts with a description of Brownian motion, the random process which serves as the basic driver of the irregular behaviour of financial quantities. That exposition is based on the easily understood discrete random walk. Thereafter the gains from trading in a random environment are formulated in a discrete-time setting. The continuous-time equivalent requires a new concept, the Itō stochastic integral. Its construction is explained step by step, using the so-called norm of a random process (its magnitude), of which a motivated exposition is given in an Annex. The next topic is Itō’s formula for evaluating stochastic integrals; it is the random process counter part of the well known Taylor formula for functions in ordinary calculus. Many examples are given. These ingredients are then used to formulate some well established models for the evolution of stock prices and interest rates, so-called stochastic differential equations, together with their solution methods. Once all that is in place, two methodologies for option valuation are presented. One uses the concept of a change of probability and the Girsanov transformation, which is at the core of financial mathematics. As this technique is often perceived as a magic trick, particular care has been taken to make the explanation elementary and to show numerous applications. The final chapter discusses how computations can be made more convenient by a suitable choice of the so-called numeraire. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website www.wiley.com/go/brownianmotioncalculus.
Publisher: John Wiley & Sons
ISBN: 0470021705
Category : Business & Economics
Languages : en
Pages : 342
Book Description
BROWNIAN MOTION CALCULUS Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. The sequence of chapters starts with a description of Brownian motion, the random process which serves as the basic driver of the irregular behaviour of financial quantities. That exposition is based on the easily understood discrete random walk. Thereafter the gains from trading in a random environment are formulated in a discrete-time setting. The continuous-time equivalent requires a new concept, the Itō stochastic integral. Its construction is explained step by step, using the so-called norm of a random process (its magnitude), of which a motivated exposition is given in an Annex. The next topic is Itō’s formula for evaluating stochastic integrals; it is the random process counter part of the well known Taylor formula for functions in ordinary calculus. Many examples are given. These ingredients are then used to formulate some well established models for the evolution of stock prices and interest rates, so-called stochastic differential equations, together with their solution methods. Once all that is in place, two methodologies for option valuation are presented. One uses the concept of a change of probability and the Girsanov transformation, which is at the core of financial mathematics. As this technique is often perceived as a magic trick, particular care has been taken to make the explanation elementary and to show numerous applications. The final chapter discusses how computations can be made more convenient by a suitable choice of the so-called numeraire. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website www.wiley.com/go/brownianmotioncalculus.
The Princeton Guide to Evolution
Author: David A. Baum
Publisher: Princeton University Press
ISBN: 069117587X
Category : Science
Languages : en
Pages : 886
Book Description
The essential one-volume reference to evolution The Princeton Guide to Evolution is a comprehensive, concise, and authoritative reference to the major subjects and key concepts in evolutionary biology, from genes to mass extinctions. Edited by a distinguished team of evolutionary biologists, with contributions from leading researchers, the guide contains some 100 clear, accurate, and up-to-date articles on the most important topics in seven major areas: phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society. Complete with more than 100 illustrations (including eight pages in color), glossaries of key terms, suggestions for further reading on each topic, and an index, this is an essential volume for undergraduate and graduate students, scientists in related fields, and anyone else with a serious interest in evolution. Explains key topics in some 100 concise and authoritative articles written by a team of leading evolutionary biologists Contains more than 100 illustrations, including eight pages in color Each article includes an outline, glossary, bibliography, and cross-references Covers phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society
Publisher: Princeton University Press
ISBN: 069117587X
Category : Science
Languages : en
Pages : 886
Book Description
The essential one-volume reference to evolution The Princeton Guide to Evolution is a comprehensive, concise, and authoritative reference to the major subjects and key concepts in evolutionary biology, from genes to mass extinctions. Edited by a distinguished team of evolutionary biologists, with contributions from leading researchers, the guide contains some 100 clear, accurate, and up-to-date articles on the most important topics in seven major areas: phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society. Complete with more than 100 illustrations (including eight pages in color), glossaries of key terms, suggestions for further reading on each topic, and an index, this is an essential volume for undergraduate and graduate students, scientists in related fields, and anyone else with a serious interest in evolution. Explains key topics in some 100 concise and authoritative articles written by a team of leading evolutionary biologists Contains more than 100 illustrations, including eight pages in color Each article includes an outline, glossary, bibliography, and cross-references Covers phylogenetics and the history of life; selection and adaptation; evolutionary processes; genes, genomes, and phenotypes; speciation and macroevolution; evolution of behavior, society, and humans; and evolution and modern society
Brownian Motion and Martingales in Analysis
Author: Richard Durrett
Publisher: Wadsworth Publishing Company
ISBN: 9780534030650
Category : Mathematics
Languages : en
Pages : 328
Book Description
Publisher: Wadsworth Publishing Company
ISBN: 9780534030650
Category : Mathematics
Languages : en
Pages : 328
Book Description
Microhydrodynamics, Brownian Motion, and Complex Fluids
Author: Michael D. Graham
Publisher: Cambridge University Press
ISBN: 110861440X
Category : Science
Languages : en
Pages : 282
Book Description
This is an introduction to the dynamics of fluids at small scales, the physical and mathematical underpinnings of Brownian motion, and the application of these subjects to the dynamics and flow of complex fluids such as colloidal suspensions and polymer solutions. It brings together continuum mechanics, statistical mechanics, polymer and colloid science, and various branches of applied mathematics, in a self-contained and integrated treatment that provides a foundation for understanding complex fluids, with a strong emphasis on fluid dynamics. Students and researchers will find that this book is extensively cross-referenced to illustrate connections between different aspects of the field. Its focus on fundamental principles and theoretical approaches provides the necessary groundwork for research in the dynamics of flowing complex fluids.
Publisher: Cambridge University Press
ISBN: 110861440X
Category : Science
Languages : en
Pages : 282
Book Description
This is an introduction to the dynamics of fluids at small scales, the physical and mathematical underpinnings of Brownian motion, and the application of these subjects to the dynamics and flow of complex fluids such as colloidal suspensions and polymer solutions. It brings together continuum mechanics, statistical mechanics, polymer and colloid science, and various branches of applied mathematics, in a self-contained and integrated treatment that provides a foundation for understanding complex fluids, with a strong emphasis on fluid dynamics. Students and researchers will find that this book is extensively cross-referenced to illustrate connections between different aspects of the field. Its focus on fundamental principles and theoretical approaches provides the necessary groundwork for research in the dynamics of flowing complex fluids.
Phylogenetic Comparative Methods
Author: Luke J. Harmon
Publisher:
ISBN: 9781719584463
Category :
Languages : en
Pages : 286
Book Description
An introduction to statistical analyses of phylogenetic trees using comparative methods.
Publisher:
ISBN: 9781719584463
Category :
Languages : en
Pages : 286
Book Description
An introduction to statistical analyses of phylogenetic trees using comparative methods.
Theory of Zipf's Law and Beyond
Author: Alexander I. Saichev
Publisher: Springer Science & Business Media
ISBN: 3642029469
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Zipf’s law is one of the few quantitative reproducible regularities found in e- nomics. It states that, for most countries, the size distributions of cities and of rms (with additional examples found in many other scienti c elds) are power laws with a speci c exponent: the number of cities and rms with a size greater thanS is inversely proportional toS. Most explanations start with Gibrat’s law of proportional growth but need to incorporate additional constraints and ingredients introducing deviations from it. Here, we present a general theoretical derivation of Zipf’s law, providing a synthesis and extension of previous approaches. First, we show that combining Gibrat’s law at all rm levels with random processes of rm’s births and deaths yield Zipf’s law under a “balance” condition between a rm’s growth and death rate. We nd that Gibrat’s law of proportionate growth does not need to be strictly satis ed. As long as the volatility of rms’ sizes increase asy- totically proportionally to the size of the rm and that the instantaneous growth rate increases not faster than the volatility, the distribution of rm sizes follows Zipf’s law. This suggests that the occurrence of very large rms in the distri- tion of rm sizes described by Zipf’s law is more a consequence of random growth than systematic returns: in particular, for large rms, volatility must dominate over the instantaneous growth rate.
Publisher: Springer Science & Business Media
ISBN: 3642029469
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Zipf’s law is one of the few quantitative reproducible regularities found in e- nomics. It states that, for most countries, the size distributions of cities and of rms (with additional examples found in many other scienti c elds) are power laws with a speci c exponent: the number of cities and rms with a size greater thanS is inversely proportional toS. Most explanations start with Gibrat’s law of proportional growth but need to incorporate additional constraints and ingredients introducing deviations from it. Here, we present a general theoretical derivation of Zipf’s law, providing a synthesis and extension of previous approaches. First, we show that combining Gibrat’s law at all rm levels with random processes of rm’s births and deaths yield Zipf’s law under a “balance” condition between a rm’s growth and death rate. We nd that Gibrat’s law of proportionate growth does not need to be strictly satis ed. As long as the volatility of rms’ sizes increase asy- totically proportionally to the size of the rm and that the instantaneous growth rate increases not faster than the volatility, the distribution of rm sizes follows Zipf’s law. This suggests that the occurrence of very large rms in the distri- tion of rm sizes described by Zipf’s law is more a consequence of random growth than systematic returns: in particular, for large rms, volatility must dominate over the instantaneous growth rate.
Mathematics Unlimited - 2001 and Beyond
Author: Björn Engquist
Publisher: Springer
ISBN: 364256478X
Category : Mathematics
Languages : en
Pages : 1219
Book Description
This is a book guaranteed to delight the reader. It not only depicts the state of mathematics at the end of the century, but is also full of remarkable insights into its future de- velopment as we enter a new millennium. True to its title, the book extends beyond the spectrum of mathematics to in- clude contributions from other related sciences. You will enjoy reading the many stimulating contributions and gain insights into the astounding progress of mathematics and the perspectives for its future. One of the editors, Björn Eng- quist, is a world-renowned researcher in computational sci- ence and engineering. The second editor, Wilfried Schmid, is a distinguished mathematician at Harvard University. Likewi- se the authors are all foremost mathematicians and scien- tists, and their biographies and photographs appear at the end of the book. Unique in both form and content, this is a "must-read" for every mathematician and scientist and, in particular, for graduates still choosing their specialty. Limited collector's edition - an exclusive and timeless work. This special, numbered edition will be available until June 1, 2000. Firm orders only.
Publisher: Springer
ISBN: 364256478X
Category : Mathematics
Languages : en
Pages : 1219
Book Description
This is a book guaranteed to delight the reader. It not only depicts the state of mathematics at the end of the century, but is also full of remarkable insights into its future de- velopment as we enter a new millennium. True to its title, the book extends beyond the spectrum of mathematics to in- clude contributions from other related sciences. You will enjoy reading the many stimulating contributions and gain insights into the astounding progress of mathematics and the perspectives for its future. One of the editors, Björn Eng- quist, is a world-renowned researcher in computational sci- ence and engineering. The second editor, Wilfried Schmid, is a distinguished mathematician at Harvard University. Likewi- se the authors are all foremost mathematicians and scien- tists, and their biographies and photographs appear at the end of the book. Unique in both form and content, this is a "must-read" for every mathematician and scientist and, in particular, for graduates still choosing their specialty. Limited collector's edition - an exclusive and timeless work. This special, numbered edition will be available until June 1, 2000. Firm orders only.