Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses PDF full book. Access full book title Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses by Ademar Pereira Serra. Download full books in PDF and EPUB format.

Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses

Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses PDF Author: Ademar Pereira Serra
Publisher:
ISBN:
Category : Science
Languages : en
Pages :

Book Description
There is a concern about the growing population and limitation in natural resources which are taking the population to direct its agricultural systems into a more productive and efficient activity, looking to avoid a negative impact on the surrounding environment. The industry energy expended to produce nitrogen (N)-fertilizer is considered an indirect consumption of energy in agriculture, which is higher with an increasing forage yield. Nitrogen is the key nutrient associated with high-yielding production in forage grass and grain crops. The aim of this chapter is to introduce the best management practices (BMPs) for N-fertilizer application in forage grasses to improve N-use efficiency, since the most economical way to feed livestock is forage plants where its potential biomass production is not well explored. The BMPs basically follow three management practices: (1) soil nutrient availability and forage requirement, (2) fertilizer application, and (3) decrease in nutrient losses from soil. In order to take a decision on applying N-fertilizer to accomplish forage grasses production with social, economic, and environmental benefits, the N-fertilizer use in forage grasses is going to follow the "Right rate, Right source, Right place, and Right time (4R) nutrient stewardship." The application of the 4R's nutrients stewardship is directly associated with economic, social, and environmental impact. The capacity of the 4R's implementation worldwide turns into a best guide to improve the striving of better N-use efficiency in forage grass. The 4R's are interrelated; thus, the recommendation of N-fertilizer rates cannot be prescribed without the combination of the 4R's where a whole system to be followed should be considered to decide about N-fertilizer in pasture. Consequently, any decision in one of the 4R's is going to affect the expected N-fertilizer results and dry matter production.

Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses

Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses PDF Author: Ademar Pereira Serra
Publisher:
ISBN:
Category : Science
Languages : en
Pages :

Book Description
There is a concern about the growing population and limitation in natural resources which are taking the population to direct its agricultural systems into a more productive and efficient activity, looking to avoid a negative impact on the surrounding environment. The industry energy expended to produce nitrogen (N)-fertilizer is considered an indirect consumption of energy in agriculture, which is higher with an increasing forage yield. Nitrogen is the key nutrient associated with high-yielding production in forage grass and grain crops. The aim of this chapter is to introduce the best management practices (BMPs) for N-fertilizer application in forage grasses to improve N-use efficiency, since the most economical way to feed livestock is forage plants where its potential biomass production is not well explored. The BMPs basically follow three management practices: (1) soil nutrient availability and forage requirement, (2) fertilizer application, and (3) decrease in nutrient losses from soil. In order to take a decision on applying N-fertilizer to accomplish forage grasses production with social, economic, and environmental benefits, the N-fertilizer use in forage grasses is going to follow the "Right rate, Right source, Right place, and Right time (4R) nutrient stewardship." The application of the 4R's nutrients stewardship is directly associated with economic, social, and environmental impact. The capacity of the 4R's implementation worldwide turns into a best guide to improve the striving of better N-use efficiency in forage grass. The 4R's are interrelated; thus, the recommendation of N-fertilizer rates cannot be prescribed without the combination of the 4R's where a whole system to be followed should be considered to decide about N-fertilizer in pasture. Consequently, any decision in one of the 4R's is going to affect the expected N-fertilizer results and dry matter production.

New Perspectives in Forage Crops

New Perspectives in Forage Crops PDF Author: Ricardo Loiola Edvan
Publisher: BoD – Books on Demand
ISBN: 9535138065
Category : Science
Languages : en
Pages : 214

Book Description
In livestock management, the production of forage plants is undoubtedly the most efficient way to produce products of animal origin with quality and economic viability. We hope that the readers of the book "New Perspectives in Forage Crops" will have a good reading and appreciate the information provided on forage production, since the book draws on the expertise of different specialists of the area, who discuss the following aspects: fertilization, semiarid region production, forage species selection, nitrogen fixation, grasses, legumes, cacti, drought, etc. The authors of the book are of different nationalities and provide important information and diverse perspectives on the subject of forage farming.

Sustainable Dairy Production

Sustainable Dairy Production PDF Author: Peter de Jong
Publisher: John Wiley & Sons
ISBN: 1118489470
Category : Technology & Engineering
Languages : en
Pages : 197

Book Description
This book offers a comprehensive overview of the state of the art in sustainable dairy production, helping the industry to develop more sustainable dairy products, through new technologies, implementing life cycle analysis, and upgrading and optimization of their current production lines. It aims to stimulate process innovations, taking into account environmental, economic and public relations benefits for companies. Topics covered include: How to set up a sustainable production line How to quantify the carbon foot print of a dairy product by using life cycle analysis Current technologies to improve the carbon foot print What measures can be taken to reduce the global warming potential of the farm Reduction of water use in dairy production Marketing sustainable dairy products Bench marking of dairy products against other food products Potential future technological developments to improve the carbon foot print for the following decades

Nutrient Use Efficiency: from Basics to Advances

Nutrient Use Efficiency: from Basics to Advances PDF Author: Amitava Rakshit
Publisher: Springer
ISBN: 8132221699
Category : Technology & Engineering
Languages : en
Pages : 417

Book Description
This book addresses in detail multifaceted approaches to boosting nutrient use efficiency (NUE) that are modified by plant interactions with environmental variables and combine physiological, microbial, biotechnological and agronomic aspects. Conveying an in-depth understanding of the topic will spark the development of new cultivars and strains to induce NUE, coupled with best management practices that will immensely benefit agricultural systems, safeguarding their soil, water, and air quality. Written by recognized experts in the field, the book is intended to provide students, scientists and policymakers with essential insights into holistic approaches to NUE, as well as an overview of some successful case studies. In the present understanding of agriculture, NUE represents a question of process optimization in response to the increasing fragility of our natural resources base and threats to food grain security across the globe. Further improving nutrient use efficiency is a prerequisite to reducing production costs, expanding crop acreage into non-competitive marginal lands with low nutrient resources, and preventing environmental contamination. The nutrients most commonly limiting plant growth are N, P, K, S and micronutrients like Fe, Zn, B and Mo. NUE depends on the ability to efficiently take up the nutrient from the soil, but also on transport, storage, mobilization, usage within the plant and the environment. A number of approaches can help us to understand NUE as a whole. One involves adopting best crop management practices that take into account root-induced rhizosphere processes, which play a pivotal role in controlling nutrient dynamics in the soil-plant-atmosphere continuum. New technologies, from basic tools like leaf color charts to sophisticated sensor-based systems and laser land leveling, can reduce the dependency on laboratory assistance and manual labor. Another approach concerns the development of crop plants through genetic manipulations that allow them to take up and assimilate nutrients more efficiently, as well as identifying processes of plant responses to nutrient deficiency stress and exploring natural genetic variation. Though only recently introduced, the ability of microbial inoculants to induce NUE is gaining in importance, as the loss, immobilization, release and availability of nutrients are mediated by soil microbial processes.

Best Management Practices: Nutrient management planning

Best Management Practices: Nutrient management planning PDF Author:
Publisher:
ISBN:
Category : Agriculture
Languages : en
Pages : 48

Book Description


Nitrogen Fertilization of Smooth Bromegrass in Interior and Southcentral Alaska

Nitrogen Fertilization of Smooth Bromegrass in Interior and Southcentral Alaska PDF Author: Natalie D. Howard
Publisher:
ISBN:
Category : Bromegrasses
Languages : en
Pages : 49

Book Description
"Although forage crops occupy the majority of agricultural land in Alaska, best fertilizer management practices to maximize forage yield and quality in Alaska are not well established. The objective of this study was to determine optimum time and rate of nitrogen (N) fertilizer applications to produce high yields of high quality forage in interior and Southcentral Alaska from smooth bromegrass (Bromus inermus). Nine N fertilization treatments, differing in rate and time of application, were applied at four sites. Forage samples were harvested twice per season in 1999 and 2000 to obtain yield and quality values. Nitrogen applied at 225 kg ha−1 produced greater yields than N applied at 125 kg ha−1, but there were no significant differences between single and split applications. Yield and crude protein content of the control were significantly lower than plots receiving N treatment. Midseason application of N increased crude protein percentages in second cuts at most sites. Acid and neutral detergent fiber were not affected by N treatment. N fertilizer use appeared to be more efficient for split applications, but no significant differences were found. This study showed potential for the production of high yielding, good quality grass forages in Alaska under a variety of N fertilizer strategies"--Leaf iii.

The Effect of High Nitrogen Fertilization and Management Practices on Yield and Stand Reduction of Cool Season Grasses

The Effect of High Nitrogen Fertilization and Management Practices on Yield and Stand Reduction of Cool Season Grasses PDF Author: William Henry McKee
Publisher:
ISBN:
Category : Grasses
Languages : en
Pages : 132

Book Description


Inorganic Plant Nutrition

Inorganic Plant Nutrition PDF Author: A. Läuchli
Publisher: Springer Science & Business Media
ISBN: 3642688853
Category : Science
Languages : en
Pages : 467

Book Description
The first book bearing the title of this volume, Inorganic Plant Nutrition, was written by D. R. HOAGLAND of the University of California at Berkeley. As indicated by its extended title, Lectures on the Inorganic Nutrition of Plants, it is a collection of lectures - the JOHN M. PRATHER lectures, which he was invited in 1942 to give. at Harvard University and presented there between April 10 and 23 of that year - 41 years before the publication of the present volume. They were not "originally intended for publication" but fortunately HOAGLAND was persuaded to publish them; the book appeared in 1944. It might at first blush seem inappropriate to draw comparisons between a book embodying a set of lectures by a single author and an encyclopedic volume with no less than 37 contributors. But HOAGLAND'S book was a compre hensive account of the state of this science in his time, as the present volume is for ours. It was then still possible for one person, at least for a person of HOAGLAND'S intellectual breadth and catholicity of interests, to encompass many major areas of the entire field, from the soil substrate to the metabolic roles of nitrogen, potassium, and other nutrients, and from basic scientific topics to the application of plant nutritional research in solving problems encountered in the field.

Legacy Phosphorus in Agriculture: Role of Past Management and Perspectives for the Future

Legacy Phosphorus in Agriculture: Role of Past Management and Perspectives for the Future PDF Author: Luke Gatiboni
Publisher: Frontiers Media SA
ISBN: 2889663574
Category : Science
Languages : en
Pages : 140

Book Description


Achieving Nutrient and Sediment Reduction Goals in the Chesapeake Bay

Achieving Nutrient and Sediment Reduction Goals in the Chesapeake Bay PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309210828
Category : Political Science
Languages : en
Pages : 258

Book Description
The Chesapeake Bay is North America's largest and most biologically diverse estuary, as well as an important commercial and recreational resource. However, excessive amounts of nitrogen, phosphorus, and sediment from human activities and land development have disrupted the ecosystem, causing harmful algae blooms, degraded habitats, and diminished populations of many species of fish and shellfish. In 1983, the Chesapeake Bay Program (CBP) was established, based on a cooperative partnership among the U.S. Environmental Protection Agency (EPA), the state of Maryland, and the commonwealths of Pennsylvania and Virginia, and the District of Columbia, to address the extent, complexity, and sources of pollutants entering the Bay. In 2008, the CBP launched a series of initiatives to increase the transparency of the program and heighten its accountability and in 2009 an executive order injected new energy into the restoration. In addition, as part of the effect to improve the pace of progress and increase accountability in the Bay restoration, a two-year milestone strategy was introduced aimed at reducing overall pollution in the Bay by focusing on incremental, short-term commitments from each of the Bay jurisdictions. The National Research Council (NRC) established the Committee on the Evaluation of Chesapeake Bay Program Implementation for Nutrient Reduction in Improve Water Quality in 2009 in response to a request from the EPA. The committee was charged to assess the framework used by the states and the CBP for tracking nutrient and sediment control practices that are implemented in the Chesapeake Bay watershed and to evaluate the two-year milestone strategy. The committee was also to assess existing adaptive management strategies and to recommend improvements that could help CBP to meet its nutrient and sediment reduction goals. The committee did not attempt to identify every possible strategy that could be implemented but instead focused on approaches that are not being implemented to their full potential or that may have substantial, unrealized potential in the Bay watershed. Because many of these strategies have policy or societal implications that could not be fully evaluated by the committee, the strategies are not prioritized but are offered to encourage further consideration and exploration among the CBP partners and stakeholders.