Bayesian Analysis and Uncertainty in Economic Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Bayesian Analysis and Uncertainty in Economic Theory PDF full book. Access full book title Bayesian Analysis and Uncertainty in Economic Theory by Richard Michael Cyert. Download full books in PDF and EPUB format.

Bayesian Analysis and Uncertainty in Economic Theory

Bayesian Analysis and Uncertainty in Economic Theory PDF Author: Richard Michael Cyert
Publisher: Rowman & Littlefield
ISBN: 9780847674718
Category : Business & Economics
Languages : en
Pages : 234

Book Description
No descriptive material is available for this title.

Bayesian Analysis and Uncertainty in Economic Theory

Bayesian Analysis and Uncertainty in Economic Theory PDF Author: Richard Michael Cyert
Publisher: Rowman & Littlefield
ISBN: 9780847674718
Category : Business & Economics
Languages : en
Pages : 234

Book Description
No descriptive material is available for this title.

Bayesian Analysis and Uncertainty in Economic Theory

Bayesian Analysis and Uncertainty in Economic Theory PDF Author: Richard Michael Cyert
Publisher:
ISBN: 9789400931640
Category :
Languages : en
Pages : 224

Book Description


Bayesian Analysis and Uncertainty in Economic Theory

Bayesian Analysis and Uncertainty in Economic Theory PDF Author: Richard Michael Cyert
Publisher: Springer
ISBN: 9789401079228
Category : Business & Economics
Languages : en
Pages : 206

Book Description
We began this research with the objective of applying Bayesian methods of analysis to various aspects of economic theory. We were attracted to the Bayesian approach because it seemed the best analytic framework available for dealing with decision making under uncertainty, and the research presented in this book has only served to strengthen our belief in the appropriateness and usefulness of this methodology. More specif ically, we believe that the concept of organizational learning is funda mental to decision making under uncertainty in economics and that the Bayesian framework is the most appropriate for developing that concept. The central and unifying theme of this book is decision making under uncertainty in microeconomic theory. Our fundamental aim is to explore the ways in which firms and households make decisions and to develop models that have a strong empirical connection. Thus, we have attempted to contribute to economic theory by formalizing models of the actual pro cess of decision making under uncertainty. Bayesian methodology pro vides the appropriate vehicle for this formalization.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Contemporary Bayesian Econometrics and Statistics

Contemporary Bayesian Econometrics and Statistics PDF Author: John Geweke
Publisher: John Wiley & Sons
ISBN: 0471744727
Category : Mathematics
Languages : en
Pages : 322

Book Description
Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.

Bayesian Methods in Health Economics

Bayesian Methods in Health Economics PDF Author: Gianluca Baio
Publisher: CRC Press
ISBN: 1439895554
Category : Mathematics
Languages : en
Pages : 246

Book Description
Health economics is concerned with the study of the cost-effectiveness of health care interventions. This book provides an overview of Bayesian methods for the analysis of health economic data. After an introduction to the basic economic concepts and methods of evaluation, it presents Bayesian statistics using accessible mathematics. The next chapters describe the theory and practice of cost-effectiveness analysis from a statistical viewpoint, and Bayesian computation, notably MCMC. The final chapter presents three detailed case studies covering cost-effectiveness analyses using individual data from clinical trials, evidence synthesis and hierarchical models and Markov models. The text uses WinBUGS and JAGS with datasets and code available online.

Handbook of the Economics of Risk and Uncertainty

Handbook of the Economics of Risk and Uncertainty PDF Author: Mark Machina
Publisher: Newnes
ISBN: 0444536868
Category : Business & Economics
Languages : en
Pages : 897

Book Description
The need to understand the theories and applications of economic and finance risk has been clear to everyone since the financial crisis, and this collection of original essays proffers broad, high-level explanations of risk and uncertainty. The economics of risk and uncertainty is unlike most branches of economics in spanning from the individual decision-maker to the market (and indeed, social decisions), and ranging from purely theoretical analysis through individual experimentation, empirical analysis, and applied and policy decisions. It also has close and sometimes conflicting relationships with theoretical and applied statistics, and psychology. The aim of this volume is to provide an overview of diverse aspects of this field, ranging from classical and foundational work through current developments. - Presents coherent summaries of risk and uncertainty that inform major areas in economics and finance - Divides coverage between theoretical, empirical, and experimental findings - Makes the economics of risk and uncertainty accessible to scholars in fields outside economics

Bayesian Theory

Bayesian Theory PDF Author: José M. Bernardo
Publisher: John Wiley & Sons
ISBN: 047031771X
Category : Mathematics
Languages : en
Pages : 608

Book Description
This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

Robust Bayesian Analysis

Robust Bayesian Analysis PDF Author: David Rios Insua
Publisher: Springer Science & Business Media
ISBN: 1461213061
Category : Mathematics
Languages : en
Pages : 431

Book Description
Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.

Handbook of Hydrometeorological Ensemble Forecasting

Handbook of Hydrometeorological Ensemble Forecasting PDF Author: Qingyun Duan
Publisher: Springer
ISBN: 9783642399244
Category : Science
Languages : en
Pages : 0

Book Description
Hydrometeorological prediction involves the forecasting of the state and variation of hydrometeorological elements -- including precipitation, temperature, humidity, soil moisture, river discharge, groundwater, etc.-- at different space and time scales. Such forecasts form an important scientific basis for informing public of natural hazards such as cyclones, heat waves, frosts, droughts and floods. Traditionally, and at most currently operational centers, hydrometeorological forecasts are deterministic, “single-valued” outlooks: i.e., the weather and hydrological models provide a single best guess of the magnitude and timing of the impending events. These forecasts suffer the obvious drawback of lacking uncertainty information that would help decision-makers assess the risks of forecast use. Recently, hydrometeorological ensemble forecast approaches have begun to be developed and used by operational collection of hydrometeorological services. In contrast to deterministic forecasts, ensemble forecasts are a multiple forecasts of the same events. The ensemble forecasts are generated by perturbing uncertain factors such as model forcings, initial conditions, and/or model physics. Ensemble techniques are attractive because they not only offer an estimate of the most probable future state of the hydrometeorological system, but also quantify the predictive uncertainty of a catastrophic hydrometeorological event occurring. The Hydrological Ensemble Prediction Experiment (HEPEX), initiated in 2004, has signaled a new era of collaboration toward the development of hydrometeorological ensemble forecasts. By bringing meteorologists, hydrologists and hydrometeorological forecast users together, HEPEX aims to improve operational hydrometeorological forecast approaches to a standard that can be used with confidence by emergencies and water resources managers. HEPEX advocates a hydrometeorological ensemble prediction system (HEPS) framework that consists of several basic building blocks. These components include:(a) an approach (typically statistical) for addressing uncertainty in meteorological inputs and generating statistically consistent space/time meteorological inputs for hydrological applications; (b) a land data assimilation approach for leveraging observation to reduce uncertainties in the initial and boundary conditions of the hydrological system; (c) approaches that address uncertainty in model parameters (also called ‘calibration’); (d) a hydrologic model or other approach for converting meteorological inputs into hydrological outputs; and finally (e) approaches for characterizing hydrological model output uncertainty. Also integral to HEPS is a verification system that can be used to evaluate the performance of all of its components. HEPS frameworks are being increasingly adopted by operational hydrometeorological agencies around the world to support risk management related to flash flooding, river and coastal flooding, drought, and water management. Real benefits of ensemble forecasts have been demonstrated in water emergence management decision making, optimization of reservoir operation, and other applications.