Author: Panayiotis Nicos Kaloyerou
Publisher: Springer
ISBN: 3319958763
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This introductory textbook explains the concepts and methods of data and error analysis needed for laboratory experiment write-ups, especially physics and engineering experiments. The book contains the material needed for beginning students, e.g., first year university students, college students (enrolled on a certificate or diploma course) and even A-level students. Nevertheless, it also covers the required material for higher year university laboratories, including the final year. Only essential concepts and methods needed for the day-to-day performance of experiments and their subsequent analysis and presentation are included and, at the same time, presented as simply as possible. Non-essential detail is avoided. Chapter five is a stand-alone introduction to probability and statistics aimed at providing a theoretical background to the data and error analysis chapters one to four. Computer methods are introduced in Chapter six. The author hopes this book will serve as a constant reference.
Basic Concepts of Data and Error Analysis
Author: Panayiotis Nicos Kaloyerou
Publisher: Springer
ISBN: 3319958763
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This introductory textbook explains the concepts and methods of data and error analysis needed for laboratory experiment write-ups, especially physics and engineering experiments. The book contains the material needed for beginning students, e.g., first year university students, college students (enrolled on a certificate or diploma course) and even A-level students. Nevertheless, it also covers the required material for higher year university laboratories, including the final year. Only essential concepts and methods needed for the day-to-day performance of experiments and their subsequent analysis and presentation are included and, at the same time, presented as simply as possible. Non-essential detail is avoided. Chapter five is a stand-alone introduction to probability and statistics aimed at providing a theoretical background to the data and error analysis chapters one to four. Computer methods are introduced in Chapter six. The author hopes this book will serve as a constant reference.
Publisher: Springer
ISBN: 3319958763
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
This introductory textbook explains the concepts and methods of data and error analysis needed for laboratory experiment write-ups, especially physics and engineering experiments. The book contains the material needed for beginning students, e.g., first year university students, college students (enrolled on a certificate or diploma course) and even A-level students. Nevertheless, it also covers the required material for higher year university laboratories, including the final year. Only essential concepts and methods needed for the day-to-day performance of experiments and their subsequent analysis and presentation are included and, at the same time, presented as simply as possible. Non-essential detail is avoided. Chapter five is a stand-alone introduction to probability and statistics aimed at providing a theoretical background to the data and error analysis chapters one to four. Computer methods are introduced in Chapter six. The author hopes this book will serve as a constant reference.
Data Reduction and Error Analysis for the Physical Sciences
Author: Philip R. Bevington
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Mathematics
Languages : en
Pages : 362
Book Description
This book is designed as a laboratory companion, student textbook or reference book for professional scientists. The text is for use in one-term numerical analysis, data and error analysis, or computer methods courses, or for laboratory use. It is for the sophomore-junior level, and calculus is a prerequisite. The new edition includes applications for PC use.
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Mathematics
Languages : en
Pages : 362
Book Description
This book is designed as a laboratory companion, student textbook or reference book for professional scientists. The text is for use in one-term numerical analysis, data and error analysis, or computer methods courses, or for laboratory use. It is for the sophomore-junior level, and calculus is a prerequisite. The new edition includes applications for PC use.
An Introduction to Error Analysis
Author: John Robert Taylor
Publisher: Univ Science Books
ISBN: 9780935702422
Category : Mathematics
Languages : en
Pages : 327
Book Description
Problems after each chapter
Publisher: Univ Science Books
ISBN: 9780935702422
Category : Mathematics
Languages : en
Pages : 327
Book Description
Problems after each chapter
A Student's Guide to Data and Error Analysis
Author: Herman J. C. Berendsen
Publisher: Cambridge University Press
ISBN: 1139497855
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.
Publisher: Cambridge University Press
ISBN: 1139497855
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.
Data Analysis Methods in Physical Oceanography
Author: Richard E. Thomson
Publisher: Elsevier
ISBN: 0080477003
Category : Science
Languages : en
Pages : 654
Book Description
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Publisher: Elsevier
ISBN: 0080477003
Category : Science
Languages : en
Pages : 654
Book Description
Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: "(...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers." Aslib Book Guide Vol 63, No. 9, 1998 "(...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching." EOS Transactions, D.A. Jay, 1999 "(...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations." Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 "(...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries." E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
Introduction to Data Science
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Software Error Analysis
Author: Wendy W. Peng
Publisher: Silicon Press
ISBN: 9780929306186
Category : Computers
Languages : en
Pages : 120
Book Description
Publisher: Silicon Press
ISBN: 9780929306186
Category : Computers
Languages : en
Pages : 120
Book Description
Data Analysis for the Life Sciences with R
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1498775861
Category : Mathematics
Languages : en
Pages : 537
Book Description
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
Publisher: CRC Press
ISBN: 1498775861
Category : Mathematics
Languages : en
Pages : 537
Book Description
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
Basic Concepts of Data and Error Analysis
Author: Panayiotis Nicos Kaloyerou
Publisher:
ISBN: 9783319958774
Category : Engineering mathematics
Languages : en
Pages : 259
Book Description
This introductory textbook explains the concepts and methods of data and error analysis needed for laboratory experiment write-ups, especially physics and engineering experiments. The book contains the material needed for beginning students, e.g., first year university students, college students (enrolled on a certificate or diploma course) and even A-level students. Nevertheless, it also covers the required material for higher year university laboratories, including the final year. Only essential concepts and methods needed for the day-to-day performance of experiments and their subsequent analysis and presentation are included and, at the same time, presented as simply as possible. Non-essential detail is avoided. Chapter five is a stand-alone introduction to probability and statistics aimed at providing a theoretical background to the data and error analysis chapters one to four. Computer methods are introduced in Chapter six. The author hopes this book will serve as a constant reference.
Publisher:
ISBN: 9783319958774
Category : Engineering mathematics
Languages : en
Pages : 259
Book Description
This introductory textbook explains the concepts and methods of data and error analysis needed for laboratory experiment write-ups, especially physics and engineering experiments. The book contains the material needed for beginning students, e.g., first year university students, college students (enrolled on a certificate or diploma course) and even A-level students. Nevertheless, it also covers the required material for higher year university laboratories, including the final year. Only essential concepts and methods needed for the day-to-day performance of experiments and their subsequent analysis and presentation are included and, at the same time, presented as simply as possible. Non-essential detail is avoided. Chapter five is a stand-alone introduction to probability and statistics aimed at providing a theoretical background to the data and error analysis chapters one to four. Computer methods are introduced in Chapter six. The author hopes this book will serve as a constant reference.
R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results