Bacterial Gene Regulation and Transcriptional Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Bacterial Gene Regulation and Transcriptional Networks PDF full book. Access full book title Bacterial Gene Regulation and Transcriptional Networks by M. Madan Babu. Download full books in PDF and EPUB format.

Bacterial Gene Regulation and Transcriptional Networks

Bacterial Gene Regulation and Transcriptional Networks PDF Author: M. Madan Babu
Publisher: Caister Academic Press Limited
ISBN: 9781908230140
Category : Science
Languages : en
Pages : 0

Book Description
Gene regulation at the transcriptional level is central to the process by which organisms convert the constant sensing of environmental changes and intracellular fluzes of metabolites to homeostatic responses. Along with the strategic guidance of M. Madan Babu authors from around the world have joined forces to review and discuss the latest research observations and current theories in this highly topical and important area of microbiology.--

Bacterial Gene Regulation and Transcriptional Networks

Bacterial Gene Regulation and Transcriptional Networks PDF Author: M. Madan Babu
Publisher: Caister Academic Press Limited
ISBN: 9781908230140
Category : Science
Languages : en
Pages : 0

Book Description
Gene regulation at the transcriptional level is central to the process by which organisms convert the constant sensing of environmental changes and intracellular fluzes of metabolites to homeostatic responses. Along with the strategic guidance of M. Madan Babu authors from around the world have joined forces to review and discuss the latest research observations and current theories in this highly topical and important area of microbiology.--

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria PDF Author: Frans J. de Bruijn
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472

Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.

Structural and Parametric Identification of Bacterial Regulatory Networks

Structural and Parametric Identification of Bacterial Regulatory Networks PDF Author: Diana Stefan
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
High-throughput technologies yield large amounts of data about the steady-state levels and the dynamical changes of gene expression in bacteria. An important challenge for the biological interpretation of these data consists in deducing the topology of the underlying regulatory network as well as quantitative gene regulation functions from such data. A large number of inference methods have been proposed in the literature and have been successful in a variety of applications, although several problems remain. We focus here on improving two aspects of the inference methods. First, transcriptome data reflect the abundance of mRNA, whereas the components that regulate are most often the proteins coded by the mRNAs. Although the concentrations of mRNA and protein correlate reasonably during steady-state growth, this correlation becomes much more tenuous in time-series data acquired during growth transitions in bacteria because of the very different half-lives of proteins and mRNA. Second, the dynamics of gene expression is not only controlled by transcription factors and other specific regulators, but also by global physiological effects that modify the activity of all genes. For example, the concentrations of (free) RNA polymerase and the concentration of ribosomes vary strongly with growth rate. We therefore have to take into account such effects when trying to reconstruct a regulatory network from gene expression data. We propose here a combined experimental and computational approach to address these two fundamental problems in the inference of quantitative models of the activity of bacterial promoters from time-series gene expression data. We focus on the case where the dynamics of gene expression is measured in vivo and in real time by means of fluorescent reporter genes. Our network reconstruction approach accounts for the differences between mRNA and protein half-lives and takes into account global physiological effects. When the half-lives of the proteins are available, the measurement models used for deriving the activities of genes from fluorescence data are integrated to yield estimates of protein concentrations. The global physiological state of the cell is estimated from the activity of a phage promoter, whose expression is not controlled by any transcription factor and depends only on the activity of the transcriptional and translational machinery. We apply the approach to a central module in the regulatory network controlling motility and the chemotaxis system in Escherichia coli. This module comprises the FliA, FlgM and tar genes. FliA is a sigma factor that directs RNA polymerase to operons coding for components of the flagellar assembly. The effect of FliA is counteracted by the antisigma factor FlgM, itself transcribed by FliA. The third component of the network, tar, codes for the aspartate chemoreceptor protein Tar and is directly transcribed by the FliA-containing RNA polymerase holoenzyme. The FliA-FlgM module is particularly well-suited for studying the inference problems considered here, since the network has been well-studied and protein half-lives play an important role in its functioning. We stimulated the FliA-FlgM module in a variety of wild-type and mutant strains and different growth media. The measured transcriptional response of the genes was used to systematically test the information required for the reliable inference of the regulatory interactions and quantitative predictive models of gene regulation. Our results show that for the reliable reconstruction of transcriptional regulatory networks in bacteria it is necessary to include global effects into the network model and explicitly deduce protein concentrations from the observed expression profiles. Our approach should be generally applicable to a large variety of network inference problems and we discuss limitations and possible extensions of the method.

Regulation of Gene Expression by Small RNAs

Regulation of Gene Expression by Small RNAs PDF Author: Rajesh K. Gaur
Publisher: CRC Press
ISBN: 1420008706
Category : Science
Languages : en
Pages : 440

Book Description
New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p

Bacterial Regulatory Networks

Bacterial Regulatory Networks PDF Author: Alain Filloux
Publisher: Caister Academic Press Limited
ISBN: 9781908230034
Category : Science
Languages : en
Pages : 0

Book Description
Regulatory networks enable bacteria to adapt to almost every environmental niche on earth. Regulation is achieved by a network of interactions among diverse types of molecules including DNA, RNA, proteins and metabolites. The primary role of regulatory networks in bacteria is to control the response to environmental changes, such as nutritional status and environmental stress. A complex organization of networks allows the organism to coordinate and integrate multiple environmental signals. Renowned authors under the expert guidance of the editor Alain A.M. Filloux, have contributed authoritative, up-to-date reviews of the current research and theories on regulatory networks in bacteria. The volume contains critical reviews written by the leading research scientists in this topical field. The authors fully explore various regulatory networks, discuss variations of common themes and provide fresh insights into bacterial regulatory mechanisms. Topics include: the sigma network in Escherichia coli, control of bacterial virulence, ECF sigma factors, quorum sensing, cyclic di-GMP, RNA-mediated regulation, the H-NS regulator, two-component regulatory systems, bacterial chemotaxis, regulation of iron homeostasis, anaerobic regulatory networks, bacterial bistable regulatory networks, and evolution of transcription factors and regulatory networks. This book is essential reading for everyone interested in gene expression and regulation in bacteria and is a recommended text for all microbiology libraries.

Systems Biology of Transcription Regulation

Systems Biology of Transcription Regulation PDF Author: Ekaterina Shelest
Publisher: Frontiers Media SA
ISBN: 2889199673
Category : Biotechnology
Languages : en
Pages : 191

Book Description
Transcription regulation is a complex process that can be considered and investigated from different perspectives. Traditionally and due to technical reasons (including the evolution of our understanding of the underlying processes) the main focus of the research was made on the regulation of expression through transcription factors (TFs), the proteins directly binding to DNA. On the other hand, intensive research is going on in the field of chromatin structure, remodeling and its involvement in the regulation. Whatever direction we select, we can speak about several levels of regulation. For instance, concentrating on TFs, we should consider multiple regulatory layers, starting with signaling pathways and ending up with the TF binding sites in the promoters and other regulatory regions. However, it is obvious that the TF regulation, also including the upstream processes, represents a modest portion of all processes leading to gene expression. For more comprehensive description of the gene regulation, we need a systematic and holistic view, which brings us to the importance of systems biology approaches. Advances in methodology, especially in high-throughput methods, result in an ever-growing mass of data, which in many cases is still waiting for appropriate consideration. Moreover, the accumulation of data is going faster than the development of algorithms for their systematic evaluation. Data and methods integration is indispensable for the acquiring a systematic as well as a systemic view. In addition to the huge amount of molecular or genetic components of a biological system, the even larger number of their interactions constitutes the enormous complexity of processes occurring in a living cell (organ, organism). In systems biology, these interactions are represented by networks. Transcriptional or, more generally, gene regulatory networks are being generated from experimental ChIPseq data, by reverse engineering from transcriptomics data, or from computational predictions of transcription factor (TF) – target gene relations. While transcriptional networks are now available for many biological systems, mathematical models to simulate their dynamic behavior have been successfully developed for metabolic and, to some extent, for signaling networks, but relatively rarely for gene regulatory networks. Systems biology approaches provide new perspectives that raise new questions. Some of them address methodological problems, others arise from the newly obtained understanding of the data. These open questions and problems are also a subject of this Research Topic.

Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Book Description


Prokaryotic Gene Expression

Prokaryotic Gene Expression PDF Author: Simon Baumberg
Publisher: OUP Oxford
ISBN: 0191565571
Category : Science
Languages : en
Pages : 350

Book Description
Prokaryotic gene expression is not only of theoretical interest but also of highly practical significance. It has implications for other biological problems, such as developmental biology and cancer, brings insights into genetic engineering and expression systems, and has consequences for important aspects of applied research. For example, the molecular basis of bacterial pathogenicity has implications for new antibiotics and in crop development. Prokaryotic Gene Expression is a major review of the subject, providing up-to-date coverage as well as numerous insights by the prestigious authors. Topics covered include operons; protein recognition of sequence specific DNA- and RNA-binding sites; promoters; sigma factors, and variant tRNA polymerases; repressors and activators; post-transcriptional control and attenuation; ribonuclease activity, mRNA stability, and translational repression; prokaryotic DNA topology, topoisomerases, and gene expression; regulatory networks, regulatory cascades and signal transduction; phosphotransfer reactions; switch systems, transcriptional and translational modulation, methylation, and recombination mechanisms; pathogenicity, toxin regulation and virulence determinants; sporulation and genetic regulation of antibiotic production; origins of regulatory molecules, selective pressures and evolution of prokaryotic regulatory mechanisms systems. Over 1100 references to the primary literature are cited. Prokaryotic Gene Expression is a comprehensive and authoritative review of current knowledge and research in the area. It is essential reading for postgraduates and researchers in the field. Advanced undergraduates in biochemistry, molecular biology, and microbiology will also find this book useful.

Statistical Analysis of Next Generation Sequencing Data

Statistical Analysis of Next Generation Sequencing Data PDF Author: Somnath Datta
Publisher: Springer
ISBN: 3319072129
Category : Medical
Languages : en
Pages : 438

Book Description
Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.

Spatial Modelling of Transcription Dynamics in Bacterial Gene Regulatory Networks

Spatial Modelling of Transcription Dynamics in Bacterial Gene Regulatory Networks PDF Author: Ruud Stoof
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description