Author: Jan A. Sanders
Publisher: Springer Science & Business Media
ISBN: 1475745753
Category : Mathematics
Languages : en
Pages : 259
Book Description
In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.
Averaging Methods in Nonlinear Dynamical Systems
Author: Jan A. Sanders
Publisher: Springer Science & Business Media
ISBN: 1475745753
Category : Mathematics
Languages : en
Pages : 259
Book Description
In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.
Publisher: Springer Science & Business Media
ISBN: 1475745753
Category : Mathematics
Languages : en
Pages : 259
Book Description
In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.
Nonlinear Differential Equations and Dynamical Systems
Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
ISBN: 3642971490
Category : Mathematics
Languages : en
Pages : 287
Book Description
Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.
Publisher: Springer Science & Business Media
ISBN: 3642971490
Category : Mathematics
Languages : en
Pages : 287
Book Description
Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475
Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Averaging Methods in Nonlinear Dynamical Systems
Author: Jan A. Sanders
Publisher:
ISBN: 9781475745764
Category :
Languages : en
Pages : 264
Book Description
Publisher:
ISBN: 9781475745764
Category :
Languages : en
Pages : 264
Book Description
Nonlinear Dynamics
Author: H.G Solari
Publisher: Routledge
ISBN: 1351428306
Category : Mathematics
Languages : en
Pages : 369
Book Description
Nonlinear Dynamics: A Two-Way Trip from Physics to Math provides readers with the mathematical tools of nonlinear dynamics to tackle problems in all areas of physics. The selection of topics emphasizes bifurcation theory and topological analysis of dynamical systems. The book includes real-life problems and experiments as well as exercises and work
Publisher: Routledge
ISBN: 1351428306
Category : Mathematics
Languages : en
Pages : 369
Book Description
Nonlinear Dynamics: A Two-Way Trip from Physics to Math provides readers with the mathematical tools of nonlinear dynamics to tackle problems in all areas of physics. The selection of topics emphasizes bifurcation theory and topological analysis of dynamical systems. The book includes real-life problems and experiments as well as exercises and work
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Author: John Guckenheimer
Publisher:
ISBN: 9781461211419
Category :
Languages : en
Pages : 484
Book Description
Publisher:
ISBN: 9781461211419
Category :
Languages : en
Pages : 484
Book Description
Hamiltonian Mechanics
Author: John Seimenis
Publisher: Springer Science & Business Media
ISBN: 1489909648
Category : Science
Languages : en
Pages : 417
Book Description
This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the new European situation -the Europe without borders -quickly passed away. The names of our invited speakers, authorities in their field, were a magnet for many colleagues from all over the world.
Publisher: Springer Science & Business Media
ISBN: 1489909648
Category : Science
Languages : en
Pages : 417
Book Description
This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the new European situation -the Europe without borders -quickly passed away. The names of our invited speakers, authorities in their field, were a magnet for many colleagues from all over the world.
The Method of Normal Forms
Author: Ali H. Nayfeh
Publisher: John Wiley & Sons
ISBN: 352741097X
Category : Science
Languages : en
Pages : 344
Book Description
In this introductory treatment Ali Nayfeh presents different concepts from dynamical systems theory and nonlinear dynamics in a rigorous yet plan way. He systematically introduces models and techniques and states the relevant ranges of validity and applicability. The reader is provided with a clear operational framework for consciously use rather than focused on the underlying mathematical apparatus. The exposition is largely by means of examples, dealt with up to their final outcome. For most of the examples, the results obtained with the method of normal forms are equivalent to those obtained with other perturbation methods, such as the method of multiple scales and the method of averaging. The previous edition had a remarkable success by researchers from all over the world working in the area of nonlinear dynamics and their applications in engineering. Additions to this new edition concern major topics of current interest. In particular, the author added three new chapters dedicated to Maps, Bifurcations of Continuous Systems, and Retarded Systems. In particular the latter has become of major importance in several applications, both in mechanics and in different areas. Accessible to engineers and applied scientist involved with nonlinear dynamics and their applications in a wide variety of fields. It is assumed that readers have a knowledge of basic calculus as well as the elementary properties of ordinary-differential equations.
Publisher: John Wiley & Sons
ISBN: 352741097X
Category : Science
Languages : en
Pages : 344
Book Description
In this introductory treatment Ali Nayfeh presents different concepts from dynamical systems theory and nonlinear dynamics in a rigorous yet plan way. He systematically introduces models and techniques and states the relevant ranges of validity and applicability. The reader is provided with a clear operational framework for consciously use rather than focused on the underlying mathematical apparatus. The exposition is largely by means of examples, dealt with up to their final outcome. For most of the examples, the results obtained with the method of normal forms are equivalent to those obtained with other perturbation methods, such as the method of multiple scales and the method of averaging. The previous edition had a remarkable success by researchers from all over the world working in the area of nonlinear dynamics and their applications in engineering. Additions to this new edition concern major topics of current interest. In particular, the author added three new chapters dedicated to Maps, Bifurcations of Continuous Systems, and Retarded Systems. In particular the latter has become of major importance in several applications, both in mechanics and in different areas. Accessible to engineers and applied scientist involved with nonlinear dynamics and their applications in a wide variety of fields. It is assumed that readers have a knowledge of basic calculus as well as the elementary properties of ordinary-differential equations.
Modern Mathematics and Mechanics
Author: Victor A. Sadovnichiy
Publisher: Springer
ISBN: 331996755X
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
In this book international expert authors provide solutions for modern fundamental problems including the complexity of computing of critical points for set-valued mappings, the behaviour of solutions of ordinary differential equations, partial differential equations and difference equations, or the development of an abstract theory of global attractors for multi-valued impulsive dynamical systems. These abstract mathematical approaches are applied to problem-solving in solid mechanics, hydro- and aerodynamics, optimization, decision making theory and control theory. This volume is therefore relevant to mathematicians as well as engineers working at the interface of these fields.
Publisher: Springer
ISBN: 331996755X
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
In this book international expert authors provide solutions for modern fundamental problems including the complexity of computing of critical points for set-valued mappings, the behaviour of solutions of ordinary differential equations, partial differential equations and difference equations, or the development of an abstract theory of global attractors for multi-valued impulsive dynamical systems. These abstract mathematical approaches are applied to problem-solving in solid mechanics, hydro- and aerodynamics, optimization, decision making theory and control theory. This volume is therefore relevant to mathematicians as well as engineers working at the interface of these fields.