Author: Stephen S. Gelbart
Publisher: Princeton University Press
ISBN: 1400881617
Category : Mathematics
Languages : en
Pages : 227
Book Description
This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?
Automorphic Forms on Adele Groups. (AM-83), Volume 83
Author: Stephen S. Gelbart
Publisher: Princeton University Press
ISBN: 1400881617
Category : Mathematics
Languages : en
Pages : 227
Book Description
This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?
Publisher: Princeton University Press
ISBN: 1400881617
Category : Mathematics
Languages : en
Pages : 227
Book Description
This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?
Automorphic Forms on GL (3,TR)
Author: D. Bump
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196
Book Description
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196
Book Description
Automorphic Forms and Representations of Adele Groups
Author: Stephen S. Gelbart
Publisher:
ISBN:
Category : Adeles
Languages : en
Pages : 98
Book Description
Publisher:
ISBN:
Category : Adeles
Languages : en
Pages : 98
Book Description
Automorphic Forms on Adele Groups
Author: Stephen S. Gelbart
Publisher: Princeton University Press
ISBN: 9780691081564
Category : Mathematics
Languages : en
Pages : 284
Book Description
This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?
Publisher: Princeton University Press
ISBN: 9780691081564
Category : Mathematics
Languages : en
Pages : 284
Book Description
This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?
Automorphic Forms and Representations
Author: Daniel Bump
Publisher: Cambridge University Press
ISBN: 9780521658188
Category : Mathematics
Languages : en
Pages : 592
Book Description
This book takes advanced graduate students from the foundations to topics on the research frontier.
Publisher: Cambridge University Press
ISBN: 9780521658188
Category : Mathematics
Languages : en
Pages : 592
Book Description
This book takes advanced graduate students from the foundations to topics on the research frontier.
Automorphic Forms on GL (2)
Author: H. Jacquet
Publisher: Springer
ISBN: 3540376127
Category : Mathematics
Languages : en
Pages : 156
Book Description
Publisher: Springer
ISBN: 3540376127
Category : Mathematics
Languages : en
Pages : 156
Book Description
Automorphic Forms and L-Functions for the Group GL(n,R)
Author: Dorian Goldfeld
Publisher: Cambridge University Press
ISBN: 1139456202
Category : Mathematics
Languages : en
Pages : 65
Book Description
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.
Publisher: Cambridge University Press
ISBN: 1139456202
Category : Mathematics
Languages : en
Pages : 65
Book Description
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.
Representation Theory and Automorphic Forms
Author: T. N. Bailey
Publisher: American Mathematical Soc.
ISBN: 0821806092
Category : Mathematics
Languages : en
Pages : 490
Book Description
The lectures from a course in the representation theory of semi- simple groups, automorphic forms, and the relations between them. The purpose is to help analysts make systematic use of Lie groups in work on harmonic analysis, differential equations, and mathematical physics; and to provide number theorists with the representation-theoretic input to Wiles's proof of Fermat's Last Theorem. Begins with an introductory treatment of structure theory and ends with the current status of functionality. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 0821806092
Category : Mathematics
Languages : en
Pages : 490
Book Description
The lectures from a course in the representation theory of semi- simple groups, automorphic forms, and the relations between them. The purpose is to help analysts make systematic use of Lie groups in work on harmonic analysis, differential equations, and mathematical physics; and to provide number theorists with the representation-theoretic input to Wiles's proof of Fermat's Last Theorem. Begins with an introductory treatment of structure theory and ends with the current status of functionality. Annotation copyrighted by Book News, Inc., Portland, OR
Eisenstein Series and Automorphic Representations
Author: Philipp Fleig
Publisher: Cambridge Studies in Advanced
ISBN: 1107189926
Category : Mathematics
Languages : en
Pages : 587
Book Description
Detailed exposition of automorphic representations and their relation to string theory, for mathematicians and theoretical physicists.
Publisher: Cambridge Studies in Advanced
ISBN: 1107189926
Category : Mathematics
Languages : en
Pages : 587
Book Description
Detailed exposition of automorphic representations and their relation to string theory, for mathematicians and theoretical physicists.
Elements of the Representation Theory of the Jacobi Group
Author: Rolf Berndt
Publisher: Springer Science & Business Media
ISBN: 303480282X
Category : Mathematics
Languages : en
Pages : 225
Book Description
Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.
Publisher: Springer Science & Business Media
ISBN: 303480282X
Category : Mathematics
Languages : en
Pages : 225
Book Description
Combining algebraic groups and number theory, this volume gathers material from the representation theory of this group for the first time, doing so for both local (Archimedean and non-Archimedean) cases as well as for the global number field case.