Automatic Three-dimensional Mesh Generation by the Finite Octree Technique PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Automatic Three-dimensional Mesh Generation by the Finite Octree Technique PDF full book. Access full book title Automatic Three-dimensional Mesh Generation by the Finite Octree Technique by Mark S. Shephard. Download full books in PDF and EPUB format.

Automatic Three-dimensional Mesh Generation by the Finite Octree Technique

Automatic Three-dimensional Mesh Generation by the Finite Octree Technique PDF Author: Mark S. Shephard
Publisher:
ISBN:
Category :
Languages : en
Pages : 91

Book Description


Automatic Three-dimensional Mesh Generation by the Finite Octree Technique

Automatic Three-dimensional Mesh Generation by the Finite Octree Technique PDF Author: Mark S. Shephard
Publisher:
ISBN:
Category :
Languages : en
Pages : 91

Book Description


The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method PDF Author: Chongmin Song
Publisher: John Wiley & Sons
ISBN: 1119388457
Category : Science
Languages : en
Pages : 775

Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

The Finite Element Method: Its Basis and Fundamentals

The Finite Element Method: Its Basis and Fundamentals PDF Author: O. C. Zienkiewicz
Publisher: Elsevier
ISBN: 008047277X
Category : Technology & Engineering
Languages : en
Pages : 753

Book Description
The Sixth Edition of this influential best-selling book delivers the most up-to-date and comprehensive text and reference yet on the basis of the finite element method (FEM) for all engineers and mathematicians. Since the appearance of the first edition 38 years ago, The Finite Element Method provides arguably the most authoritative introductory text to the method, covering the latest developments and approaches in this dynamic subject, and is amply supplemented by exercises, worked solutions and computer algorithms.• The classic FEM text, written by the subject's leading authors • Enhancements include more worked examples and exercises• With a new chapter on automatic mesh generation and added materials on shape function development and the use of higher order elements in solving elasticity and field problemsActive research has shaped The Finite Element Method into the pre-eminent tool for the modelling of physical systems. It maintains the comprehensive style of earlier editions, while presenting the systematic development for the solution of problems modelled by linear differential equations. Together with the second and third self-contained volumes (0750663219 and 0750663227), The Finite Element Method Set (0750664312) provides a formidable resource covering the theory and the application of FEM, including the basis of the method, its application to advanced solid and structural mechanics and to computational fluid dynamics. - The classic introduction to the finite element method, by two of the subject's leading authors - Any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in this key text

Handbook of Grid Generation

Handbook of Grid Generation PDF Author: Joe F. Thompson
Publisher: CRC Press
ISBN: 9781420050349
Category : Technology & Engineering
Languages : en
Pages : 1136

Book Description
Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: Fundamental concepts and approaches Grid generation process Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations Separate grids overlaid on one another, communicating data through interpolation Moving boundaries and internal interfaces in the field Resolving gradients and controlling solution error Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.

Finite Element Mesh Generation

Finite Element Mesh Generation PDF Author: Daniel S.H. Lo
Publisher: CRC Press
ISBN: 041569048X
Category : Technology & Engineering
Languages : en
Pages : 676

Book Description
Highlights the Progression of Meshing Technologies and Their Applications Finite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques, including: Delaunay triangulation Advancing-front (ADF) approach Quadtree/Octree techniques Refinement and optimization-based strategies From the geometrical and the topological aspects and their associated operations and inter-relationships, each approach is vividly described and illustrated with examples. Beyond the algorithms, the book also explores the practice of using metric tensor and surface curvatures for generating anisotropic meshes on parametric space. It presents results from research including 3D anisotropic meshing, mesh generation over unbounded domains, meshing by means of intersection, re-meshing by Delaunay-ADF approach, mesh refinement and optimization, generation of hexahedral meshes, and large scale and parallel meshing, along with innovative unpublished meshing methods. The author provides illustrations of major meshing algorithms, pseudo codes, and programming codes in C++ or FORTRAN. Geared toward research centers, universities, and engineering companies, Finite Element Mesh Generation describes mesh generation methods and fundamental techniques, and also serves as a valuable reference for laymen and experts alike.

Mesh Generation and Adaptation

Mesh Generation and Adaptation PDF Author: Rubén Sevilla
Publisher: Springer Nature
ISBN: 3030925404
Category : Mathematics
Languages : en
Pages : 328

Book Description
The developments in mesh generation are usually driven by the needs of new applications and/or novel algorithms. The last decade has seen a renewed interest in mesh generation and adaptation by the computational engineering community, due to the challenges introduced by complex industrial problems.Another common challenge is the need to handle complex geometries. Nowadays, it is becoming obvious that geometry should be persistent throughout the whole simulation process. Several methodologies that can carry the geometric information throughout the simulation stage are available, but due to the novelty of these methods, the generation of suitable meshes for these techniques is still the main obstacle for the industrial uptake of this technology.This book will cover different aspects of mesh generation and adaptation, with particular emphasis on cutting-edge mesh generation techniques for advanced discretisation methods and complex geometries.

The GETMe Mesh Smoothing Framework

The GETMe Mesh Smoothing Framework PDF Author: Dimitris P. Vartziotis
Publisher: CRC Press
ISBN: 0429680090
Category : Computers
Languages : en
Pages : 377

Book Description
High quality meshes play a key role in many applications based on digital modeling and simulation. The finite element method is a paragon for such an approach and it is well known that quality meshes can significantly improve computational efficiency and solution accuracy of this method. Therefore, a lot of effort has been put in methods for improving mesh quality. These range from simple geometric approaches, like Laplacian smoothing, with a high computational efficiency but possible low resulting mesh quality, to global optimization-based methods, resulting in an excellent mesh quality at the cost of an increased computational and implementational complexity. The geometric element transformation method (GETMe) aims to fill the gap between these two approaches. It is based on geometric mesh element transformations, which iteratively transform polygonal and polyhedral elements into their regular counterparts or into elements with a prescribed shape. GETMe combines a Laplacian smoothing-like computational efficiency with a global optimization-like effectiveness. The method is straightforward to implement and its variants can also be used to improve tangled and anisotropic meshes. This book describes the mathematical theory of geometric element transformations as foundation for mesh smoothing. It gives a thorough introduction to GETMe-based mesh smoothing and its algorithms providing a framework to focus on effectively improving key mesh quality aspects. It addresses the improvement of planar, surface, volumetric, mixed, isotropic, and anisotropic meshes and addresses aspects of combining mesh smoothing with topological mesh modification. The advantages of GETMe-based mesh smoothing are demonstrated by the example of various numerical tests. These include smoothing of real world meshes from engineering applications as well as smoothing of synthetic meshes for demonstrating key aspects of GETMe-based mesh improvement. Results are compared with those of other smoothing methods in terms of runtime behavior, mesh quality, and resulting finite element solution efficiency and accuracy. Features: • Helps to improve finite element mesh quality by applying geometry-driven mesh smoothing approaches. • Supports the reader in understanding and implementing GETMe-based mesh smoothing. • Discusses aspects and properties of GETMe smoothing variants and thus provides guidance for choosing the appropriate mesh improvement algorithm. • Addresses smoothing of various mesh types: planar, surface, volumetric, isotropic, anisotropic, non-mixed, and mixed. • Provides and analyzes geometric element transformations for polygonal and polyhedral elements with regular and non-regular limits. • Includes a broad range of numerical examples and compares results with those of other smoothing methods.

Computer Visualization

Computer Visualization PDF Author: Richard S. Gallagher
Publisher: CRC Press
ISBN: 1000939812
Category : Computers
Languages : en
Pages : 328

Book Description
Rapid advances in 3-D scientific visualization have made a major impact on the display of behavior. The use of 3-D has become a key component of both academic research and commercial product development in the field of engineering design. Computer Visualization presents a unified collection of computer graphics techniques for the scientific visualization of behavior. The book combines a basic overview of the fundamentals of computer graphics with a practitioner-oriented review of the latest 3-D graphics display and visualization techniques. Each chapter is written by well-known experts in the field. The first section reviews how computer graphics visualization techniques have evolved to work with digital numerical analysis methods. The fundamentals of computer graphics that apply to the visualization of analysis data are also introduced. The second section presents a detailed discussion of the algorithms and techniques used to visualize behavior in 3-D, as static, interactive, or animated imagery. It discusses the mathematics of engineering data for visualization, as well as providing the current methods used for the display of scalar, vector, and tensor fields. It also examines the more general issues of visualizing a continuum volume field and animating the dimensions of time and motion in a state of behavior. The final section focuses on production visualization capabilities, including the practical computational aspects of visualization such as user interfaces, database architecture, and interaction with a model. The book concludes with an outline of successful practical applications of visualization, and future trends in scientific visualization.

The Finite Element Method in Engineering

The Finite Element Method in Engineering PDF Author: Singiresu S. Rao
Publisher: Butterworth-Heinemann
ISBN: 0128143649
Category : Technology & Engineering
Languages : en
Pages : 784

Book Description
The Finite Element Method in Engineering, Sixth Edition, provides a thorough grounding in the mathematical principles behind the Finite Element Analysis technique—an analytical engineering tool originated in the 1960's by the aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. Rao shows how to set up finite element solutions in civil, mechanical and aerospace engineering applications. The new edition features updated real-world examples from MATLAB, Ansys and Abaqus, and a new chapter on additional FEM topics including extended FEM (X-FEM). Professional engineers will benefit from the introduction to the many useful applications of finite element analysis. - Includes revised and updated chapters on MATLAB, Ansys and Abaqus - Offers a new chapter, Additional Topics in Finite Element Method - Includes discussion of practical considerations, errors and pitfalls in FEM singularity elements - Features a brief presentation of recent developments in FEM including extended FEM (X-FEM), augmented FEM (A-FEM) and partition of unity FEM (POUFEM) - Features improved pedagogy, including the addition of more design-oriented and practical examples and problems - Covers real-life applications, sample review questions at the end of most chapters, and updated references

Handbook of Computational Geometry

Handbook of Computational Geometry PDF Author: J.R. Sack
Publisher: Elsevier
ISBN: 0080529682
Category : Mathematics
Languages : en
Pages : 1087

Book Description
Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.