Hybrid Atomic-Scale Interface Design for Materials Functionality PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hybrid Atomic-Scale Interface Design for Materials Functionality PDF full book. Access full book title Hybrid Atomic-Scale Interface Design for Materials Functionality by Ajit K. Roy. Download full books in PDF and EPUB format.

Hybrid Atomic-Scale Interface Design for Materials Functionality

Hybrid Atomic-Scale Interface Design for Materials Functionality PDF Author: Ajit K. Roy
Publisher: Elsevier
ISBN: 012819118X
Category : Technology & Engineering
Languages : en
Pages : 281

Book Description
Hybrid Atomic-Scale Interface Design for Materials Functionality covers a broad range of atomistic, meso and macro scale computational methodologies, including multiphase (hybrid) materials constructs for tailoring structural, thermal and electrical properties. As future materials are expected to perform with increasing efficiency in complex and dynamic environments hybrid materials design, in contrast to monolithic concepts, they are a cost-effective alternative. Taking materials hybridization at smaller scale, even at atomic scale, offers exceedingly high-payoff opportunities for optimizing materials functionality at reduced material consumption and even reduced qualification costs (eliminates many costly component and system level qualification tests). Presents computational methodologies for materials hybridization and interface design at the atomic scale Covers materials interface design (atomic configuration), a key component to optimize and achieve performance metrics Helps readers with material selectivity and in the materials design phase of any product design

Hybrid Atomic-Scale Interface Design for Materials Functionality

Hybrid Atomic-Scale Interface Design for Materials Functionality PDF Author: Ajit K. Roy
Publisher: Elsevier
ISBN: 012819118X
Category : Technology & Engineering
Languages : en
Pages : 281

Book Description
Hybrid Atomic-Scale Interface Design for Materials Functionality covers a broad range of atomistic, meso and macro scale computational methodologies, including multiphase (hybrid) materials constructs for tailoring structural, thermal and electrical properties. As future materials are expected to perform with increasing efficiency in complex and dynamic environments hybrid materials design, in contrast to monolithic concepts, they are a cost-effective alternative. Taking materials hybridization at smaller scale, even at atomic scale, offers exceedingly high-payoff opportunities for optimizing materials functionality at reduced material consumption and even reduced qualification costs (eliminates many costly component and system level qualification tests). Presents computational methodologies for materials hybridization and interface design at the atomic scale Covers materials interface design (atomic configuration), a key component to optimize and achieve performance metrics Helps readers with material selectivity and in the materials design phase of any product design

Atomic Scale Materials Design

Atomic Scale Materials Design PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 233

Book Description


Computational Materials Repository

Computational Materials Repository PDF Author: David Dominic Landis
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Atomic-Scale Analytical Tomography

Atomic-Scale Analytical Tomography PDF Author: Thomas F. Kelly
Publisher: Cambridge University Press
ISBN: 1009254863
Category : Technology & Engineering
Languages : en
Pages :

Book Description
A comprehensive guide on Atomic-Scale Analytical Tomography (ASAT) that discusses basic concepts and implications of the technique in areas such as material sciences, microscopy, engineering sciences and several interdisciplinary avenues. The title interrogates how to successfully achieve ASAT at the intersection of transmission electron microscopy and atom probe microscopy. This novel concept is capable of identifying individual atoms in large volumes as well as in 3D, with high spatial resolution. Written by leading experts from academia and industry, this book serves as a guide with real-world applications on cutting-edge research problems. An essential reading for researchers, engineers and practitioners interested in nanoscale characterisation, this book introduces the reader to a new direction for atomic-scale microscopy.

Atomic and Nanometer-Scale Modification of Materials

Atomic and Nanometer-Scale Modification of Materials PDF Author: P. Avouris
Publisher: Springer Science & Business Media
ISBN: 9401120242
Category : Technology & Engineering
Languages : en
Pages : 344

Book Description
This volume contains the proceedings of the conference on "Atomic and Nanometer Scale Modification of Materials: Fundamentals and Applications" which was co-sponsored by NATO and the Engineering Foundation, and took place in Ventura, California in August 1992. The goal of the organizers was to bring together and facilitate the exchange of information and ideas between researchers involved in the development of techniques for nanometer-scale modification and manipulation. theorists investigating the fundamental mech anisms of the processes involved in modification, and scientists studying the properties and applications of nanostructures. About seventy scientists from all over the world participated in the conference. It has been more than 30 years since Richard Feynman wrote his prophetic article: ''There is Plenty of Room at the Bottom" (Science and Engineering, 23, 22, 1960). In it he predicted that some day we should be able to store bits of information in structures composed of only 100 atoms or so, and thus be able to write all the information accumulated in all the books in the world in a cube of material one two-hundredths of an inch high. He went on to say, "the prin ciples of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. " Since that time there has been significant progress towards the realization of Feynman's dreams.

Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes

Atomic and Nano Scale Materials for Advanced Energy Conversion, 2 Volumes PDF Author: Zongyou Yin
Publisher: John Wiley & Sons
ISBN: 3527348921
Category : Technology & Engineering
Languages : en
Pages : 887

Book Description
Atomic and Nano Scale Materials for Advanced Energy Conversion Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques In Atomic and Nano Scale Materials for Advanced Energy Conversion, expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. Readers will also benefit from: A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies A thorough analysis of future perspectives and directions in advanced energy conversion technology Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists, Atomic and Nano Scale Materials for Advanced Energy Conversion is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.

Atomic Scale Calculations of structure in materials

Atomic Scale Calculations of structure in materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Atomic Design

Atomic Design PDF Author: Brad Frost
Publisher:
ISBN: 9780998296609
Category :
Languages : en
Pages :

Book Description


Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems PDF Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372

Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Thermoelectric Nanomaterials

Thermoelectric Nanomaterials PDF Author: Kunihito Koumoto
Publisher: Springer Science & Business Media
ISBN: 3642375375
Category : Technology & Engineering
Languages : en
Pages : 395

Book Description
Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also indicates the applications of thermoelectrics expected for the large emerging energy market. This book has a wide appeal and application value for anyone being interested in state-of-the-art thermoelectrics and/or actual viable applications in nanotechnology.