Atomic Layer Deposition of Nanostructured Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Atomic Layer Deposition of Nanostructured Materials PDF full book. Access full book title Atomic Layer Deposition of Nanostructured Materials by Nicola Pinna. Download full books in PDF and EPUB format.

Atomic Layer Deposition of Nanostructured Materials

Atomic Layer Deposition of Nanostructured Materials PDF Author: Nicola Pinna
Publisher: John Wiley & Sons
ISBN: 3527639926
Category : Technology & Engineering
Languages : en
Pages : 463

Book Description
Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (due to the systematic presentation of the results at the forefront of the technique and their applications) and the ones of students and newcomers to the fi eld (through the first part detailing the basic aspects of the technique). This book is a must-have for all Materials Scientists, Surface Chemists, Physicists, and Scientists in the Semiconductor Industry.

Atomic Layer Deposition of Nanostructured Materials

Atomic Layer Deposition of Nanostructured Materials PDF Author: Nicola Pinna
Publisher: John Wiley & Sons
ISBN: 3527639926
Category : Technology & Engineering
Languages : en
Pages : 463

Book Description
Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (due to the systematic presentation of the results at the forefront of the technique and their applications) and the ones of students and newcomers to the fi eld (through the first part detailing the basic aspects of the technique). This book is a must-have for all Materials Scientists, Surface Chemists, Physicists, and Scientists in the Semiconductor Industry.

Atomic Layer Deposition

Atomic Layer Deposition PDF Author: Tommi Kääriäinen
Publisher: John Wiley & Sons
ISBN: 1118062779
Category : Technology & Engineering
Languages : en
Pages : 274

Book Description
Since the first edition was published in 2008, Atomic Layer Deposition (ALD) has emerged as a powerful, and sometimes preferred, deposition technology. The new edition of this groundbreaking monograph is the first text to review the subject of ALD comprehensively from a practical perspective. It covers ALD's application to microelectronics (MEMS) and nanotechnology; many important new and emerging applications; thermal processes for ALD growth of nanometer thick films of semiconductors, oxides, metals and nitrides; and the formation of organic and hybrid materials.

Handbook of Crystal Growth

Handbook of Crystal Growth PDF Author: Tom Kuech
Publisher: Elsevier
ISBN: 0444633057
Category : Science
Languages : en
Pages : 1384

Book Description
Volume IIIA Basic TechniquesHandbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures.Volume IIIB Materials, Processes, and TechnologyHandbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.Volume IIIA Basic Techniques - Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. - Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth - Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology - Describes atomic level epitaxial deposition and other low temperature growth techniques - Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials - Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials

Atomic Layer Epitaxy

Atomic Layer Epitaxy PDF Author: T. Suntola
Publisher: Springer
ISBN: 9789401066617
Category : Technology & Engineering
Languages : en
Pages : 280

Book Description
This book provides a detailed study of the Atomic Layer Epitaxy technique (ALE), its development, current and potential applications. The rapid development of coating technologies over the last 25 years has been instrumental in generating interest and expertise in thin films of materials, and indeed the market for thin film coatings is currently £3 billion with projected annual growth of 20 to 30% [1]. ALE is typical of thin-film processes in that problems in the processing or preparation of good quality epitaxial films have been overcome, resulting in better performance, novel applications of previously unsuitable materials, and the development of new devices. Many materials exhibit interesting and novel properties when prepared as thin films and doped. Vapour-deposited coatings and films are used extensively in the semiconductor and related industries for making single devices, integrated circuits, microwave hybrid integrated circuits, compact discs, solar reflective glazing, fibre optics, photo voltaic cells, sensors, displays, and many other products in general, everyday use. The ALE technique was developed by a research team led by Tuomo Suntola, working for Instrumentarium Oy in Finland. The key members of this team were lorma Antson, Arto Pakkala and Sven Lindfors. In 1977, the research team moved from Instrumentarium to Lohja Corporation, where they continued the development of ALE and were granted a patent in the same year. By 1980, the technique was sufficiently advanced that they were producing flat-screen electroluminescent displays based on a manganese-doped zinc sulphide layer.

Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors PDF Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
ISBN: 146148054X
Category : Science
Languages : en
Pages : 266

Book Description
Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Atomic Layer Epitaxy

Atomic Layer Epitaxy PDF Author: T. Suntola
Publisher: Springer
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 200

Book Description
This book provides a detailed study of the Atomic Layer Epitaxy technique (ALE), its development, current and potential applications. The rapid development of coating technologies over the last 25 years has been instrumental in generating interest and expertise in thin films of materials, and indeed the market for thin film coatings is currently £3 billion with projected annual growth of 20 to 30% [1]. ALE is typical of thin-film processes in that problems in the processing or preparation of good quality epitaxial films have been overcome, resulting in better performance, novel applications of previously unsuitable materials, and the development of new devices. Many materials exhibit interesting and novel properties when prepared as thin films and doped. Vapour-deposited coatings and films are used extensively in the semiconductor and related industries for making single devices, integrated circuits, microwave hybrid integrated circuits, compact discs, solar reflective glazing, fibre optics, photo voltaic cells, sensors, displays, and many other products in general, everyday use. The ALE technique was developed by a research team led by Tuomo Suntola, working for Instrumentarium Oy in Finland. The key members of this team were lorma Antson, Arto Pakkala and Sven Lindfors. In 1977, the research team moved from Instrumentarium to Lohja Corporation, where they continued the development of ALE and were granted a patent in the same year. By 1980, the technique was sufficiently advanced that they were producing flat-screen electroluminescent displays based on a manganese-doped zinc sulphide layer.

Thin Films on Silicon

Thin Films on Silicon PDF Author: Vijay Narayanan
Publisher:
ISBN: 9789814740487
Category : Electronic books
Languages : en
Pages : 550

Book Description
"This volume provides a broad overview of the fundamental materials science of thin films that use silicon as an active substrate or passive template, with an emphasis on opportunities and challenges for practical applications in electronics and photonics. It covers three materials classes on silicon: Semiconductors such as undoped and doped Si and SiGe, SiC, GaN, and III-V arsenides and phosphides; dielectrics including silicon nitride and high-k, low-k, and electro-optically active oxides; and metals, in particular silicide alloys. The impact of film growth and integration on physical, electrical, and optical properties, and ultimately device performance, is highlighted."--Publisher's website.

Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790

Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community

Handbook of Manufacturing Engineering and Technology

Handbook of Manufacturing Engineering and Technology PDF Author: Andrew Y. C. Nee
Publisher: Springer
ISBN: 9781447146698
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.

CVD of Compound Semiconductors

CVD of Compound Semiconductors PDF Author: Anthony C. Jones
Publisher: John Wiley & Sons
ISBN: 3527614621
Category : Science
Languages : en
Pages : 352

Book Description
Chemical growth methods of electronic materials are the keystone of microelectronic device processing. This book discusses the applications of metalorganic chemistry for the vapor phase deposition of compound semiconductors. Vapor phase methods used for semiconductor deposition and the materials properties that make the organometallic precursors useful in the electronics industry are discussed for a variety of materials. Topics included: * techniques for compound semiconductor growth * metalorganic precursors for III-V MOVPE * metalorganic precursors for II-VI MOVPE * single-source precursors * chemical beam epitaxy * atomic layer epitaxy Several useful appendixes and a critically selected, up-to-date list of references round off this practical handbook for materials scientists, solid-state and organometallic chemists, and engineers.