Atmospheric Radiation Measurement Program Facilities Newsletter, April 2000 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Atmospheric Radiation Measurement Program Facilities Newsletter, April 2000 PDF full book. Access full book title Atmospheric Radiation Measurement Program Facilities Newsletter, April 2000 by . Download full books in PDF and EPUB format.

Atmospheric Radiation Measurement Program Facilities Newsletter, April 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, April 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

Atmospheric Radiation Measurement Program Facilities Newsletter, April 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, April 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

Atmospheric Radiation Measurement Program Facilities Newsletter, September 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, September 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
This is the third water vapor IOP and it will focus on the lower portions of the atmosphere. Again, scientists will work to achieve absolute calibrations of water vapor instrumentation. For this purpose, several instruments will be deployed, and measurements will be compared. Instruments to be used include radiosondes, Raman lidar, chilled-mirror hygrometers, surface meteorological observation station (SMOS) towers, a variety of microwave radiometers, and global positioning systems (GPS). The current experiment has two goals. The first is to characterize the accuracy of the water vapor measurements, especially the daily operational observations being made around the clock in the lower levels of the atmosphere at the CART site. The second goal is to develop techniques for improving the accuracy of these observations in order to obtain the best possible water vapor measurements under a wide range of atmospheric conditions.

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
This issue of the ARM facilities newsletter discusses the Spring 2000 cloud intensive observation period, March 1--21, 2000. The month of March brings researchers to the SGP CART site to participate in the Spring 2000 Cloud IOP. The purpose is to gather data about the three-dimensional structure and distribution of clouds over the CART site. This effort will help to produce a more accurate representation of the clouds and their influence on weather and climate for use in computer modeling.

Atmospheric Radiation Measurement Program Facilities Newsletter, September 2002

Atmospheric Radiation Measurement Program Facilities Newsletter, September 2002 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
This Atmospheric radiation measurement program facilities newsletter covers the following topics: The Raman lidar at the SGP central facility is receiving upgrades to its environmental controls; The instrument tower at Okmulgee State Park is receiving upgrades to prevent Turkey Vultures from roosting on the booms.

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The Atmospheric Radiation Measurement Program (ARM Program) is sending a copy of the ARM Video, an education overview of their program. In the video you will see and hear ARM scientists describe the importance of studying climate and climate change. It also contains a tour of some ARM sites and a look at state-of-the-art meteorological instrumentation, along with background information about the radiation budget and the complexity of climate modeling. The video was produced by the US Department of Energy.

Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

Atmospheric Radiation Measurement Program Facilities Newsletter, August 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, August 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
The primary objective of this USDA program is to provide information to the agricultural community about the geographic and temporal climatology of UV-B radiation. Scientists also use the data to determine changes in stratospheric ozone levels, cloud cover, and aerosols as they pertain to UV-B radiation and to improve the understanding of factors that control transmission of UV-B radiation. Advances have been made in areas of agriculture, human health effects, ecosystem studies, and atmospheric science. ARM Program personnel are excited about being a part of such a worthwhile effort.

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2002

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2002 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract not provided.

Atmospheric Radiation Measurement Program Facilities Newsletter, November 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, November 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
Winter Weather Outlook--With the chill of colder temperatures in the air, we can rest assured that the icy grips of winter are just around the corner. The Climate Prediction Center (CPC), a specialized part of the National Weather Service (NWS), has issued its annual winter outlook for the 2000-2001 winter season. The CPC, located in Camp Springs, Maryland, is a government agency that focuses its predictions on Earth's climate. In comparison to the NWS forecasts of short-term weather events, the CPC goes farther into the future (from a week to seasons). The CPC conducts real-time monitoring of Earth's climate and makes predictions of climate variability over land and ocean and in the atmosphere. The CPC also evaluates the sources of major climate anomalies. The operations branch of the CPC prepares long-range forecasts by applying dynamical, empirical, and statistical techniques. The analysis branch performs applied research to identify physical factors responsible for climate fluctuations. The two branches work jointly to test new forecast methods and models, with the goal of improving model output. The CPC also evaluates the outlook for floods, droughts, hurricanes, ozone depletion, and El Nino and La Nina environments. So, what is the CPC outlook for winter 2000-2001? For the most part, winter weather will return to ''normal'' this season, because the El Nino and La Nina anomalies that shaped our past three winters have dissipated. Normal winter weather statistics are based on data for 1961-1990. The strong influence of the sea surface temperature in the tropical Pacific Ocean during an El Nino or La Nina episode, which makes it easier for forecasters to predict the trend for weather events, has given way to more neutral conditions. This winter, we should be prepared for swings in temperature and precipitation. The CPC is forecasting a more normal winter in general. Thus, we should expect colder temperatures than during the past three winters, which were greatly influenced and warmed by La Nina conditions.

Atmospheric Radiation Measurement Program Facilities Newsletter, January 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, January 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Book Description
The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sits in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.