Atmospheric Radiation Measurement Program Facilities Newsletter, March 2001 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Atmospheric Radiation Measurement Program Facilities Newsletter, March 2001 PDF full book. Access full book title Atmospheric Radiation Measurement Program Facilities Newsletter, March 2001 by . Download full books in PDF and EPUB format.

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
The February 1998 issue of this newsletter discussed the Measurement of Pollution in the Troposphere (MOPITT) instrument that was to be tested at the SGP CART site before being launched aboard a NASA satellite to make precise, detailed measurements of tropospheric carbon monoxide and methane from space. The instrument was successfully launched on NASA's Terra satellite on December 18, 1999, by an Atlas IIAS rocket from Vandenberg Air Force Base in California and began collecting data at the end of February 2000. The instrument was designed by Dr. Jim Drummond, a physicist at the University of Toronto. The MOPITT Validation Exercise (MOVE) Campaign is schedule to take place at the SGP site from April 30 to May 18, 2001. Researchers will measure carbon monoxide by using instruments onboard the DOE Cessna Citation aircraft and other instruments located at the SGP CART. The data gathered will be compared with those collected by the MOPITT instrument to validate its performance thus far. MOPITT, which is scheduled for a five-year mission, will provide the first long-term global measurements of carbon monoxide and methane gas levels in roughly the lowest 10 miles of the atmosphere. Carbon monoxide and methane and their roles as greenhouse gases in global warming are of great interest. Greenhouse gases can trap escaping heat from Earth's surface, potentially increasing atmospheric temperatures. Carbon monoxide is a by-product of combustion, resulting primarily from industrial processing or biomass burning. Carbon monoxide levels in the atmosphere have been rising, indicating a problem. Normally, carbon monoxide is removed from the atmosphere by the hydroxyl radical, which can react with and remove many pollutants from the air.

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
The February 1998 issue of this newsletter discussed the Measurement of Pollution in the Troposphere (MOPITT) instrument that was to be tested at the SGP CART site before being launched aboard a NASA satellite to make precise, detailed measurements of tropospheric carbon monoxide and methane from space. The instrument was successfully launched on NASA's Terra satellite on December 18, 1999, by an Atlas IIAS rocket from Vandenberg Air Force Base in California and began collecting data at the end of February 2000. The instrument was designed by Dr. Jim Drummond, a physicist at the University of Toronto. The MOPITT Validation Exercise (MOVE) Campaign is schedule to take place at the SGP site from April 30 to May 18, 2001. Researchers will measure carbon monoxide by using instruments onboard the DOE Cessna Citation aircraft and other instruments located at the SGP CART. The data gathered will be compared with those collected by the MOPITT instrument to validate its performance thus far. MOPITT, which is scheduled for a five-year mission, will provide the first long-term global measurements of carbon monoxide and methane gas levels in roughly the lowest 10 miles of the atmosphere. Carbon monoxide and methane and their roles as greenhouse gases in global warming are of great interest. Greenhouse gases can trap escaping heat from Earth's surface, potentially increasing atmospheric temperatures. Carbon monoxide is a by-product of combustion, resulting primarily from industrial processing or biomass burning. Carbon monoxide levels in the atmosphere have been rising, indicating a problem. Normally, carbon monoxide is removed from the atmosphere by the hydroxyl radical, which can react with and remove many pollutants from the air.

Atmospheric Radiation Measurement Program Facilities Newsletter, January 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, January 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil moisture and temperature at eight distinct subsurface levels. A special set of probes used in the SWATS measures soil temperature, soil-water potential, and volumetric water content. Sensors are placed at eight different depths below the soil surface, starting at approximately 5 cm (2 in.) below the surface and ending as deep as 175 cm (69 in.). Each site has two identical sets of probes buried 1 m (3.3 ft) apart, to yield duplicate measurements as a quality control measure. At some sites, impenetrable soil or rock layers prevented installation of probes at the deeper levels. The sensors are connected to an electronic data logger that collects and stores the data. Communication equipment transfers data from the site. All of the electronic equipment is housed in a weatherproof enclosure mounted on a concrete slab.

Atmospheric Radiation Measurement Program Facilities Newsletter, May 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, May 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
To help communities guard against the devastation that can result from severe weather, the National Weather Service (NWS) has developed a new program called StormReady. The aim is to build, at the community level, the communication and safety skills necessary to prevent loss of life and property in the event of severe weather. Each year weather-related disasters lead to 500 deaths and $14 billion in damage. The NWS hopes that prepared communities implementing StormReady can reduce these numbers when local emergency managers have clear-cut guidelines for improving their hazardous weather operations.

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
This newsletter consists of the following: (1) ARM Science Team Meeting Scheduled--The 11th Annual ARM Science Team meeting is scheduled for March 19-23, 2001, in Atlanta, Georgia. Members of the science team will exchange research results achieved by using ARM data. The science team is composed of working groups that investigate four topics: instantaneous radiative flux, cloud parameterizations and modeling, cloud properties, and aerosols. The annual meeting brings together the science team's 150 members to discuss issues related to ARM and its research. The members represent universities, government laboratories and research facilities, and independent research companies. (2) Communications to Extended Facilities Upgraded--New communications equipment has been installed at all of the SGP extended facilities. Shelters were installed to house the new equipment used to transfer data from instruments via the Internet to the site data system at the central facility. This upgrade has improved data availability from the extended facilities to 100% and reduced telephone costs greatly. (3) SGP Goes ''Buggy''--Steve Sekelsky, a researcher from the University of Massachusetts, is planning to bring a 95-GHz radar to the SGP central facility for deployment in March-October 2001. The radar will help to identify signals due to insects flying in the air. The ARM millimeter cloud radar, which operates at 35 GHz, is sensitive to such insect interference. Testing will also be performed by using a second 35-GHz radar with a polarized radar beam, which can differentiate signals from insects versus cloud droplets. (4) Winter Fog--Fog can add to hazards already associated with winter weather. Common types of fog formation include advection, radiation, and steam. Advection fog: An advection fog is a dense fog that forms when a warm, moist air mass moves into an area with cooler ground below. For example, fog can form in winter when warmer, water-saturated air from the south (associated with a warm front) moves over the cold, snow-covered ground. The cold ground cools the warmer air, and the water vapor condenses into small water droplets, producing a thick fog. Radiation fog: Sometimes referred to as ground fog, a radiation fog typically forms at night when skies are clear and winds are calm. At night, the ground radiates heat away from the surface, cooling the ground and the layer of air directly above it. If this lower layer of air is moist, the cooling will condense the water vapor in it, and fog will form. Radiation fog can be very patchy. Steam fog: Steam fog forms over water when cooler air blows in over a warmer water surface. The warmer water evaporates from the water surface and rises into the cooler air. The cooler air then condenses water vapor into fog. Fog can usually be prevented if a wind is present. The wind mixes the air, bringing warmer air from aloft to the ground and reducing the condensing ability of the cold air near the ground. Fog ''burns off'' in the daytime as the morning sun warms the air and evaporates the fog droplets back into the vapor form.

Atmospheric Radiation Measurement Program Facilities Newsletter, June 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, June 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
The ARM Program studies clouds, sunlight, and their interactions to understand how they affect Earth's climate. One of the many instruments used to look at clouds at the SGP CART site is the micropulse lidar (MPL; ''lidar'' was coined from ''light distance and ranging''). The ARM Program operates five MPLs. One is at the SGP central facility; one is at the North Slope of Alaska CART site in Barrow, Alaska; and three are for use at the Tropical Western Pacific site on Nauru and Manus islands. The MPL is a remote sensing instrument used to measure the height of overhead clouds and particles. An eye-safe laser in the system directs a beam vertically. As short pulses of laser light travel through the sky, they may encounter water droplets or aerosol particles in the atmosphere. These particles intercept the laser light and scatter it in different directions. Some of the scattered light returns to Earth's surface. A receiver on the ground collects backscattered light that bounces off atmospheric particles and uses the information to determine the distance between the ground and the particles. The signals detected are collected and plotted. The greater the signal strength, the more scatterers are present in the atmosphere. A plot based on this relationship provides a ''snapshot'' of the cloud overhead and shows the structure inside the cloud. In addition, the information gathered from the MPL can be used to determine the height of the planetary boundary layer, the well-mixed layer of the atmosphere that develops during daytime hours as the sun heats Earth's surface and sets up vertical mixing. Small airborne particles that can also be detected include smoke or dust carried into the atmosphere. This information is valuable to climate researchers. Because the MPL uses an eye-safe laser, it is not a danger to pilots of planes flying overhead and can be run continuously. The availability of continuous data is a great benefit to researchers in their efforts to incorporate the interactions of clouds and solar radiation into climate models. Another strength of the MPL is long-range detection. The MPL can detect clouds at altitudes above six miles and stratospheric aerosols as high as nine miles.

Atmospheric Radiation Measurement Program Facilities Newsletter, October 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, October 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
Diffuse Shortwave Intensive Observation Period--The Diffuse Shortwave IOP ran from September 23 to October 12, 2001. During this IOP, Joe Michalsky (The State University of New York-Albany) and Tom Stoffel (National Renewable Energy Laboratory) deployed approximately 15 radiometers of various designs and manufacturers on the SGP Radiometer Calibration Facility. The purpose was to compare the accuracy of the radiometers for diffuse shortwave measurements. The Scripps Institution of Oceanography and Yankee Environmental Systems also participated in the IOP. SuomiNet Installations Completed--The installation of all SuomiNet equipment has been completed at 15 extended facility locations. Six of these stations are currently online and providing data to the SuomiNet project. SuomiNet is a university-based, real-time national global positioning system (GPS) network for atmospheric research and education. (See June 2000 issue of the ARM SGP Newsletter.) The network uses GPS to measure atmospheric moisture. To view real-time data from ARM sites, please visit this web site: http://www.gst.ucar.edu/gpsrg/realtime.html.

Atmospheric Radiation Measurement Program Facilities Newsletter, April 2001

Atmospheric Radiation Measurement Program Facilities Newsletter, April 2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
Intensive Observation Period Projects Scheduled--Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes--The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the balloon rises through the air. The new RS-90 model is a high-performance radiosonde with fast-response sensors capable of providing data for each variable every second. The relatively environmentally friendly package is constructed of cardboard and steel rather than Styrofoam, and it has a water-activated battery that contains no toxic substances. The RS-90 Transition IOP is taking place during April. Operators will launch both the old RS-80 and the new RS-90 radiosondes simultaneously once each day to obtain duplicate vertical profiles of the atmosphere for comparison. This procedure will also allow data users to test the output from the old and new radiosondes in models. Narrow Field of View (NFOV) Solar Spectrometer Cloud Optical Depth Retrieval Campaign--The NFOV IOP is scheduled to take place on May 7-August 31, 2001. A researcher from Pennsylvania State University will be deploying a dual-spectrometer instrument that measures the hemispheric flux and zenith NFOV radiance over a wavelength range of 300- 1000 nanometers. (One nanometer equals 1 billionth of a meter or 0.000000039 inches.) This wavelength range includes the ultraviolet, visible, and near-infrared spectra. These measurements are used to estimate cloud optical depth--a quantity related to the amount of solar radiation intercepted by a cloud--for broken cloud fields over vegetated surfaces. The IOP measurements will be compared with optical depth measurements made by SGP instruments. Precision Gas Sampling (PGS) Validation Campaign--Researchers from Lawrence Berkeley National Laboratory in California will be deploying instruments at the CART site in May. Portable micrometeorology towers will be used to measure fluxes of carbon dioxide, water, and heat between the surface and the atmosphere. The exchange of these constituents varies with regional climate, soil type, and surface vegetation. Greater knowledge will improve the accuracy of computer models (and hence predictions) of the exchanges. Measurements made with the portable instruments will be compared with measurements being collected by instruments at the central facility. AWS Campaign--The State University of New York at Albany will deploy an oxygen A-band and water vapor band spectrometer (AWS) at the CART site on May 20-June 30, 2001. Measurements made by the AWS will be used to determine absorption of radiation by water vapor within clouds, a quantity important to understanding the behavior of solar radiation as it passes through clouds.

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2000

Atmospheric Radiation Measurement Program Facilities Newsletter, March 2000 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The Atmospheric Radiation Measurement Program (ARM Program) is sending a copy of the ARM Video, an education overview of their program. In the video you will see and hear ARM scientists describe the importance of studying climate and climate change. It also contains a tour of some ARM sites and a look at state-of-the-art meteorological instrumentation, along with background information about the radiation budget and the complexity of climate modeling. The video was produced by the US Department of Energy.

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2002

Atmospheric Radiation Measurement Program Facilities Newsletter, February 2002 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract not provided.

古典問題

古典問題 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description