Author: William A. Barnett
Publisher: Cambridge University Press
ISBN: 9780521424318
Category : Business & Economics
Languages : en
Pages : 512
Book Description
Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.
Nonparametric and Semiparametric Methods in Econometrics and Statistics
Author: William A. Barnett
Publisher: Cambridge University Press
ISBN: 9780521424318
Category : Business & Economics
Languages : en
Pages : 512
Book Description
Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.
Publisher: Cambridge University Press
ISBN: 9780521424318
Category : Business & Economics
Languages : en
Pages : 512
Book Description
Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.
Partially Linear Models
Author: Wolfgang Härdle
Publisher: Springer Science & Business Media
ISBN: 3642577008
Category : Mathematics
Languages : en
Pages : 210
Book Description
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Publisher: Springer Science & Business Media
ISBN: 3642577008
Category : Mathematics
Languages : en
Pages : 210
Book Description
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Nonparametric Regression for Censored and Truncated Data
A Parametric Approach to Nonparametric Statistics
Author: Mayer Alvo
Publisher: Springer
ISBN: 3319941534
Category : Mathematics
Languages : en
Pages : 277
Book Description
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
Publisher: Springer
ISBN: 3319941534
Category : Mathematics
Languages : en
Pages : 277
Book Description
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
Multivariate Analysis, Design of Experiments, and Survey Sampling
Author: Subir Ghosh
Publisher: CRC Press
ISBN: 1482289822
Category : Mathematics
Languages : en
Pages : 688
Book Description
"Describes recent developments and surveys important topics in the areas of multivariate analysis, design of experiments, and survey sampling. Features the work of nearly 50 international leaders."
Publisher: CRC Press
ISBN: 1482289822
Category : Mathematics
Languages : en
Pages : 688
Book Description
"Describes recent developments and surveys important topics in the areas of multivariate analysis, design of experiments, and survey sampling. Features the work of nearly 50 international leaders."
Statistica Sinica
Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 756
Book Description
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 756
Book Description
Statistical Models in Epidemiology, the Environment, and Clinical Trials
Author: M.Elizabeth Halloran
Publisher: Springer Science & Business Media
ISBN: 9780387989242
Category : Medical
Languages : en
Pages : 300
Book Description
This IMA Volume in Mathematics and its Applications STATISTICAL MODELS IN EPIDEMIOLOGY, THE ENVIRONMENT,AND CLINICAL TRIALS is a combined proceedings on "Design and Analysis of Clinical Trials" and "Statistics and Epidemiology: Environment and Health. " This volume is the third series based on the proceedings of a very successful 1997 IMA Summer Program on "Statistics in the Health Sciences. " I would like to thank the organizers: M. Elizabeth Halloran of Emory University (Biostatistics) and Donald A. Berry of Duke University (Insti tute of Statistics and Decision Sciences and Cancer Center Biostatistics) for their excellent work as organizers of the meeting and for editing the proceedings. I am grateful to Seymour Geisser of University of Minnesota (Statistics), Patricia Grambsch, University of Minnesota (Biostatistics); Joel Greenhouse, Carnegie Mellon University (Statistics); Nicholas Lange, Harvard Medical School (Brain Imaging Center, McLean Hospital); Barry Margolin, University of North Carolina-Chapel Hill (Biostatistics); Sandy Weisberg, University of Minnesota (Statistics); Scott Zeger, Johns Hop kins University (Biostatistics); and Marvin Zelen, Harvard School of Public Health (Biostatistics) for organizing the six weeks summer program. I also take this opportunity to thank the National Science Foundation (NSF) and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr.
Publisher: Springer Science & Business Media
ISBN: 9780387989242
Category : Medical
Languages : en
Pages : 300
Book Description
This IMA Volume in Mathematics and its Applications STATISTICAL MODELS IN EPIDEMIOLOGY, THE ENVIRONMENT,AND CLINICAL TRIALS is a combined proceedings on "Design and Analysis of Clinical Trials" and "Statistics and Epidemiology: Environment and Health. " This volume is the third series based on the proceedings of a very successful 1997 IMA Summer Program on "Statistics in the Health Sciences. " I would like to thank the organizers: M. Elizabeth Halloran of Emory University (Biostatistics) and Donald A. Berry of Duke University (Insti tute of Statistics and Decision Sciences and Cancer Center Biostatistics) for their excellent work as organizers of the meeting and for editing the proceedings. I am grateful to Seymour Geisser of University of Minnesota (Statistics), Patricia Grambsch, University of Minnesota (Biostatistics); Joel Greenhouse, Carnegie Mellon University (Statistics); Nicholas Lange, Harvard Medical School (Brain Imaging Center, McLean Hospital); Barry Margolin, University of North Carolina-Chapel Hill (Biostatistics); Sandy Weisberg, University of Minnesota (Statistics); Scott Zeger, Johns Hop kins University (Biostatistics); and Marvin Zelen, Harvard School of Public Health (Biostatistics) for organizing the six weeks summer program. I also take this opportunity to thank the National Science Foundation (NSF) and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr.
Nonparametric Econometrics
Author: Qi Li
Publisher: Princeton University Press
ISBN: 0691248087
Category : Business & Economics
Languages : en
Pages : 768
Book Description
A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Publisher: Princeton University Press
ISBN: 0691248087
Category : Business & Economics
Languages : en
Pages : 768
Book Description
A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Least Absolute Deviations Estimation for Censored and Truncated Regression Models
Author: James Leo Powell
Publisher:
ISBN:
Category : Econometrics
Languages : en
Pages : 262
Book Description
Publisher:
ISBN:
Category : Econometrics
Languages : en
Pages : 262
Book Description
Misspecification Tests in Econometrics
Author: L. G. Godfrey
Publisher: Cambridge University Press
ISBN: 9780521424592
Category : Business & Economics
Languages : en
Pages : 276
Book Description
Misspecification tests play an important role in detecting unreliable and inadequate economic models. This book brings together many results from the growing literature in econometrics on misspecification testing. It provides theoretical analyses and convenient methods for application. The main emphasis is on the Lagrange multiplier principle, which provides considerable unification, although several other approaches are also considered. The author also examines general checks for model adequacy that do not involve formulation of an alternative hypothesis. General and specific tests are discussed in the context of multiple regression models, systems of simultaneous equations, and models with qualitative or limited dependent variables.
Publisher: Cambridge University Press
ISBN: 9780521424592
Category : Business & Economics
Languages : en
Pages : 276
Book Description
Misspecification tests play an important role in detecting unreliable and inadequate economic models. This book brings together many results from the growing literature in econometrics on misspecification testing. It provides theoretical analyses and convenient methods for application. The main emphasis is on the Lagrange multiplier principle, which provides considerable unification, although several other approaches are also considered. The author also examines general checks for model adequacy that do not involve formulation of an alternative hypothesis. General and specific tests are discussed in the context of multiple regression models, systems of simultaneous equations, and models with qualitative or limited dependent variables.