Author: Vitali D. Milman
Publisher:
ISBN: 9783662184769
Category :
Languages : en
Pages : 172
Book Description
Asymptotic Theory of Finite Dimensional Normed Spaces
Author: Vitali D. Milman
Publisher:
ISBN: 9783662184769
Category :
Languages : en
Pages : 172
Book Description
Publisher:
ISBN: 9783662184769
Category :
Languages : en
Pages : 172
Book Description
Asymptotic Theory of Finite Dimensional Normed Spaces
Author: Vitali D. Milman
Publisher: Springer
ISBN: 3540388222
Category : Mathematics
Languages : en
Pages : 166
Book Description
This book deals with the geometrical structure of finite dimensional normed spaces, as the dimension grows to infinity. This is a part of what came to be known as the Local Theory of Banach Spaces (this name was derived from the fact that in its first stages, this theory dealt mainly with relating the structure of infinite dimensional Banach spaces to the structure of their lattice of finite dimensional subspaces). Our purpose in this book is to introduce the reader to some of the results, problems, and mainly methods developed in the Local Theory, in the last few years. This by no means is a complete survey of this wide area. Some of the main topics we do not discuss here are mentioned in the Notes and Remarks section. Several books appeared recently or are going to appear shortly, which cover much of the material not covered in this book. Among these are Pisier's [Pis6] where factorization theorems related to Grothendieck's theorem are extensively discussed, and Tomczak-Jaegermann's [T-Jl] where operator ideals and distances between finite dimensional normed spaces are studied in detail. Another related book is Pietch's [Pie].
Publisher: Springer
ISBN: 3540388222
Category : Mathematics
Languages : en
Pages : 166
Book Description
This book deals with the geometrical structure of finite dimensional normed spaces, as the dimension grows to infinity. This is a part of what came to be known as the Local Theory of Banach Spaces (this name was derived from the fact that in its first stages, this theory dealt mainly with relating the structure of infinite dimensional Banach spaces to the structure of their lattice of finite dimensional subspaces). Our purpose in this book is to introduce the reader to some of the results, problems, and mainly methods developed in the Local Theory, in the last few years. This by no means is a complete survey of this wide area. Some of the main topics we do not discuss here are mentioned in the Notes and Remarks section. Several books appeared recently or are going to appear shortly, which cover much of the material not covered in this book. Among these are Pisier's [Pis6] where factorization theorems related to Grothendieck's theorem are extensively discussed, and Tomczak-Jaegermann's [T-Jl] where operator ideals and distances between finite dimensional normed spaces are studied in detail. Another related book is Pietch's [Pie].
Handbook of the Geometry of Banach Spaces
Author:
Publisher: Elsevier
ISBN: 0080533507
Category : Mathematics
Languages : en
Pages : 873
Book Description
Handbook of the Geometry of Banach Spaces
Publisher: Elsevier
ISBN: 0080533507
Category : Mathematics
Languages : en
Pages : 873
Book Description
Handbook of the Geometry of Banach Spaces
Geometric Aspects of Functional Analysis
Author: Vitali D. Milman
Publisher: Springer
ISBN: 3540444890
Category : Mathematics
Languages : en
Pages : 299
Book Description
The Israeli GAFA seminar (on Geometric Aspect of Functional Analysis) during the years 2002-2003 follows the long tradition of the previous volumes. It reflects the general trends of the theory. Most of the papers deal with different aspects of the Asymptotic Geometric Analysis. In addition the volume contains papers on related aspects of Probability, classical Convexity and also Partial Differential Equations and Banach Algebras. There are also two expository papers on topics which proved to be very much related to the main topic of the seminar. One is Statistical Learning Theory and the other is Models of Statistical Physics. All the papers of this collection are original research papers.
Publisher: Springer
ISBN: 3540444890
Category : Mathematics
Languages : en
Pages : 299
Book Description
The Israeli GAFA seminar (on Geometric Aspect of Functional Analysis) during the years 2002-2003 follows the long tradition of the previous volumes. It reflects the general trends of the theory. Most of the papers deal with different aspects of the Asymptotic Geometric Analysis. In addition the volume contains papers on related aspects of Probability, classical Convexity and also Partial Differential Equations and Banach Algebras. There are also two expository papers on topics which proved to be very much related to the main topic of the seminar. One is Statistical Learning Theory and the other is Models of Statistical Physics. All the papers of this collection are original research papers.
Geometric Aspects of Functional Analysis
Author: V.D. Milman
Publisher: Springer
ISBN: 354045392X
Category : Mathematics
Languages : en
Pages : 296
Book Description
This volume of original research papers from the Israeli GAFA seminar during the years 1996-2000 not only reports on more traditional directions of Geometric Functional Analysis, but also reflects on some of the recent new trends in Banach Space Theory and related topics. These include the tighter connection with convexity and the resulting added emphasis on convex bodies that are not necessarily centrally symmetric, and the treatment of bodies which have only very weak convex-like structure. Another topic represented here is the use of new probabilistic tools; in particular transportation of measure methods and new inequalities emerging from Poincaré-like inequalities.
Publisher: Springer
ISBN: 354045392X
Category : Mathematics
Languages : en
Pages : 296
Book Description
This volume of original research papers from the Israeli GAFA seminar during the years 1996-2000 not only reports on more traditional directions of Geometric Functional Analysis, but also reflects on some of the recent new trends in Banach Space Theory and related topics. These include the tighter connection with convexity and the resulting added emphasis on convex bodies that are not necessarily centrally symmetric, and the treatment of bodies which have only very weak convex-like structure. Another topic represented here is the use of new probabilistic tools; in particular transportation of measure methods and new inequalities emerging from Poincaré-like inequalities.
Handbook of the Geometry of Banach Spaces
Author: William B. Johnson
Publisher: Elsevier
ISBN: 9780444513052
Category : Banach spaces
Languages : en
Pages : 880
Book Description
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Publisher: Elsevier
ISBN: 9780444513052
Category : Banach spaces
Languages : en
Pages : 880
Book Description
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Different Faces of Geometry
Author: Simon Donaldson
Publisher: Springer Science & Business Media
ISBN: 030648658X
Category : Mathematics
Languages : en
Pages : 424
Book Description
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun.Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the 11/8 conjecture. LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even well-known 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the geometry is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra.The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems. - From the Preface by the Editors
Publisher: Springer Science & Business Media
ISBN: 030648658X
Category : Mathematics
Languages : en
Pages : 424
Book Description
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun.Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the 11/8 conjecture. LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even well-known 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the geometry is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra.The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems. - From the Preface by the Editors
Geometric Aspects of Functional Analysis
Author: Bo'az Klartag
Publisher: Springer Nature
ISBN: 3030467627
Category : Mathematics
Languages : en
Pages : 350
Book Description
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Publisher: Springer Nature
ISBN: 3030467627
Category : Mathematics
Languages : en
Pages : 350
Book Description
Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.
Strange Phenomena in Convex and Discrete Geometry
Author: Chuanming Zong
Publisher: Springer Science & Business Media
ISBN: 1461384818
Category : Mathematics
Languages : en
Pages : 167
Book Description
Convex and discrete geometry is one of the most intuitive subjects in mathematics. One can explain many of its problems, even the most difficult - such as the sphere-packing problem (what is the densest possible arrangement of spheres in an n-dimensional space?) and the Borsuk problem (is it possible to partition any bounded set in an n-dimensional space into n+1 subsets, each of which is strictly smaller in "extent" than the full set?) - in terms that a layman can understand; and one can reasonably make conjectures about their solutions with little training in mathematics.
Publisher: Springer Science & Business Media
ISBN: 1461384818
Category : Mathematics
Languages : en
Pages : 167
Book Description
Convex and discrete geometry is one of the most intuitive subjects in mathematics. One can explain many of its problems, even the most difficult - such as the sphere-packing problem (what is the densest possible arrangement of spheres in an n-dimensional space?) and the Borsuk problem (is it possible to partition any bounded set in an n-dimensional space into n+1 subsets, each of which is strictly smaller in "extent" than the full set?) - in terms that a layman can understand; and one can reasonably make conjectures about their solutions with little training in mathematics.
Large Random Matrices: Lectures on Macroscopic Asymptotics
Author: Alice Guionnet
Publisher: Springer
ISBN: 3540698973
Category : Mathematics
Languages : en
Pages : 296
Book Description
Random matrix theory has developed in the last few years, in connection with various fields of mathematics and physics. These notes emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions. Such questions are also closely related with the asymptotic distribution of matrices, which is naturally defined in the context of free probability and operator algebra. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Maury Bramson and Steffen Lauritzen.
Publisher: Springer
ISBN: 3540698973
Category : Mathematics
Languages : en
Pages : 296
Book Description
Random matrix theory has developed in the last few years, in connection with various fields of mathematics and physics. These notes emphasize the relation with the problem of enumerating complicated graphs, and the related large deviations questions. Such questions are also closely related with the asymptotic distribution of matrices, which is naturally defined in the context of free probability and operator algebra. The material of this volume is based on a series of nine lectures given at the Saint-Flour Probability Summer School 2006. Lectures were also given by Maury Bramson and Steffen Lauritzen.