Author: Svetlana M. Bauer
Publisher: Birkhäuser
ISBN: 3319183117
Category : Mathematics
Languages : en
Pages : 342
Book Description
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russian literature not well known for an English speaking reader makes this a indispensable textbook on the topic.
Asymptotic methods in mechanics of solids
Applied Asymptotic Methods in Nonlinear Oscillations
Author: Yuri A. Mitropolsky
Publisher: Springer Science & Business Media
ISBN: 9401588473
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs [6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations.
Publisher: Springer Science & Business Media
ISBN: 9401588473
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs [6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations.
Asymptotic Methods in Mechanics
Author: Rmi Vaillancourt
Publisher: American Mathematical Soc.
ISBN: 9780821870266
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Asymptotic methods constitute an important area of both pure and applied mathematics and have applications to a vast array of problems. This collection of papers is devoted to asymptotic methods applied to mechanical problems, primarily thin structure problems. The first section presents a survey of asymptotic methods and a review of the literature, including the considerable body of Russian works in this area. This part may be used as a reference book or as a textbook for advanced undergraduate or graduate students in mathematics or engineering. The second part presents original papers containing new results. Among the key features of the book are its analysis of the general theory of asymptotic integration with applications to the theory of thin shells and plates, and new results about the local forms of vibrations and buckling of thin shells which have not yet made their way into other monographs on this subject.
Publisher: American Mathematical Soc.
ISBN: 9780821870266
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Asymptotic methods constitute an important area of both pure and applied mathematics and have applications to a vast array of problems. This collection of papers is devoted to asymptotic methods applied to mechanical problems, primarily thin structure problems. The first section presents a survey of asymptotic methods and a review of the literature, including the considerable body of Russian works in this area. This part may be used as a reference book or as a textbook for advanced undergraduate or graduate students in mathematics or engineering. The second part presents original papers containing new results. Among the key features of the book are its analysis of the general theory of asymptotic integration with applications to the theory of thin shells and plates, and new results about the local forms of vibrations and buckling of thin shells which have not yet made their way into other monographs on this subject.
Variational Methods in the Mechanics of Solids
Author: S. Nemat-Nasser
Publisher: Elsevier
ISBN: 1483145832
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
Variational Methods in the Mechanics of Solids contains the proceedings of the International Union of Theoretical and Applied Mechanics Symposium on Variational Methods in the Mechanics of Solids, held at Northwestern University in Evanston, Illinois, on September 11-13, 1978. The papers focus on advances in the application of variational methods to a variety of mathematically and technically significant problems in solid mechanics. The discussions are organized around three themes: thermomechanical behavior of composites, elastic and inelastic boundary value problems, and elastic and inelastic dynamic problems. This book is comprised of 58 chapters and opens by addressing some questions of asymptotic expansions connected with composite and with perforated materials. The following chapters explore mathematical and computational methods in plasticity; variational irreversible thermodynamics of open physical-chemical continua; macroscopic behavior of elastic material with periodically spaced rigid inclusions; and application of the Lanczos method to structural vibration. Finite deformation of elastic beams and complementary theorems of solid mechanics are also considered, along with numerical contact elastostatics; periodic solutions in plasticity and viscoplasticity; and the convergence of the mixed finite element method in linear elasticity. This monograph will appeal to practitioners of mathematicians as well as theoretical and applied mechanics.
Publisher: Elsevier
ISBN: 1483145832
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
Variational Methods in the Mechanics of Solids contains the proceedings of the International Union of Theoretical and Applied Mechanics Symposium on Variational Methods in the Mechanics of Solids, held at Northwestern University in Evanston, Illinois, on September 11-13, 1978. The papers focus on advances in the application of variational methods to a variety of mathematically and technically significant problems in solid mechanics. The discussions are organized around three themes: thermomechanical behavior of composites, elastic and inelastic boundary value problems, and elastic and inelastic dynamic problems. This book is comprised of 58 chapters and opens by addressing some questions of asymptotic expansions connected with composite and with perforated materials. The following chapters explore mathematical and computational methods in plasticity; variational irreversible thermodynamics of open physical-chemical continua; macroscopic behavior of elastic material with periodically spaced rigid inclusions; and application of the Lanczos method to structural vibration. Finite deformation of elastic beams and complementary theorems of solid mechanics are also considered, along with numerical contact elastostatics; periodic solutions in plasticity and viscoplasticity; and the convergence of the mixed finite element method in linear elasticity. This monograph will appeal to practitioners of mathematicians as well as theoretical and applied mechanics.
Linear and Nonlinear Waves in Microstructured Solids
Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1000372219
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.
Publisher: CRC Press
ISBN: 1000372219
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.
Mathematical Modelling of Solids with Nonregular Boundaries
Author: A.B. Movchan
Publisher: CRC Press
ISBN: 9780849383380
Category : Mathematics
Languages : en
Pages : 344
Book Description
Mathematical Modelling of Solids with Nonregular Boundaries demonstrates the use of asymptotic methods and other analytical techniques for investigating problems in solid mechanics. Applications to solids with nonregular boundaries are described in detail, providing precise and rigorous treatment of current methods and techniques. The book addresses problems in fracture mechanics of inhomogeneous media and illustrates applications in strength analysis and in geophysics. The rigorous approach allows the reader to explicitly analyze the stress-strain state in continuous media with cavities or inclusions, in composite materials with small defects, and in elastic solids with sharp inclusions. Effective asymptotic procedures for eigenvalue problems in domains with small defects are clearly outlined, and methods for analyzing singularly perturbed boundary value problems are examined. Introductory material is provided in the first chapter of Mathematical Modelling of Solids with Nonregular Boundaries, which presents a survey of relevant and necessary information, including equations of linear elasticity and formulations of the boundary value problems. Background information - in the form of definitions and general solutions - is also provided on elasticity problems in various bounded and unbounded domains. This book is an excellent resource for students, applied scientists, and engineers.
Publisher: CRC Press
ISBN: 9780849383380
Category : Mathematics
Languages : en
Pages : 344
Book Description
Mathematical Modelling of Solids with Nonregular Boundaries demonstrates the use of asymptotic methods and other analytical techniques for investigating problems in solid mechanics. Applications to solids with nonregular boundaries are described in detail, providing precise and rigorous treatment of current methods and techniques. The book addresses problems in fracture mechanics of inhomogeneous media and illustrates applications in strength analysis and in geophysics. The rigorous approach allows the reader to explicitly analyze the stress-strain state in continuous media with cavities or inclusions, in composite materials with small defects, and in elastic solids with sharp inclusions. Effective asymptotic procedures for eigenvalue problems in domains with small defects are clearly outlined, and methods for analyzing singularly perturbed boundary value problems are examined. Introductory material is provided in the first chapter of Mathematical Modelling of Solids with Nonregular Boundaries, which presents a survey of relevant and necessary information, including equations of linear elasticity and formulations of the boundary value problems. Background information - in the form of definitions and general solutions - is also provided on elasticity problems in various bounded and unbounded domains. This book is an excellent resource for students, applied scientists, and engineers.
Methods of Analysis and Solutions of Crack Problems
Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9789001798604
Category : Science
Languages : en
Pages : 578
Book Description
It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.
Publisher: Springer Science & Business Media
ISBN: 9789001798604
Category : Science
Languages : en
Pages : 578
Book Description
It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.
Asymptotical Mechanics of Composites
Author: Igor V. Andrianov
Publisher: Springer
ISBN: 3319657860
Category : Science
Languages : en
Pages : 333
Book Description
In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.
Publisher: Springer
ISBN: 3319657860
Category : Science
Languages : en
Pages : 333
Book Description
In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.
Methods of Fracture Mechanics: Solid Matter Physics
Author: G.P. Cherepanov
Publisher: Springer Science & Business Media
ISBN: 9401722625
Category : Science
Languages : en
Pages : 334
Book Description
Modern fracture mechanics considers phenomena at many levels, macro and micro; it is therefore inextricably linked to methods of theoretical and mathematical physics. This book introduces these sophisticated methods in a straightforward manner. The methods are applied to several important phenomena of solid state physics which impinge on fracture mechanics: adhesion, defect nucleation and growth, dislocation emission, sintering, the electron beam effect and fractal cracks. The book shows how the mathematical models for such processes may be set up, and how the equations so formulated may be solved and interpreted. The many open problems which are encountered will provide topics for MSc and PhD theses in fracture mechanics, and in theoretical and experimental physics. As a supplementary text, the book can be used in graduate level courses on fracture mechanics, solid matter physics, and mechanics of solids, or in a special course on the application of fracture mechanics methods in solid matter physics.
Publisher: Springer Science & Business Media
ISBN: 9401722625
Category : Science
Languages : en
Pages : 334
Book Description
Modern fracture mechanics considers phenomena at many levels, macro and micro; it is therefore inextricably linked to methods of theoretical and mathematical physics. This book introduces these sophisticated methods in a straightforward manner. The methods are applied to several important phenomena of solid state physics which impinge on fracture mechanics: adhesion, defect nucleation and growth, dislocation emission, sintering, the electron beam effect and fractal cracks. The book shows how the mathematical models for such processes may be set up, and how the equations so formulated may be solved and interpreted. The many open problems which are encountered will provide topics for MSc and PhD theses in fracture mechanics, and in theoretical and experimental physics. As a supplementary text, the book can be used in graduate level courses on fracture mechanics, solid matter physics, and mechanics of solids, or in a special course on the application of fracture mechanics methods in solid matter physics.
Asymptotic Methods for Engineers
Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 104003277X
Category : Mathematics
Languages : en
Pages : 409
Book Description
Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).
Publisher: CRC Press
ISBN: 104003277X
Category : Mathematics
Languages : en
Pages : 409
Book Description
Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).