Asymptotic Theory of Statistical Inference for Time Series PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Asymptotic Theory of Statistical Inference for Time Series PDF full book. Access full book title Asymptotic Theory of Statistical Inference for Time Series by Masanobu Taniguchi. Download full books in PDF and EPUB format.

Asymptotic Theory of Statistical Inference for Time Series

Asymptotic Theory of Statistical Inference for Time Series PDF Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146121162X
Category : Mathematics
Languages : en
Pages : 671

Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Asymptotic Theory of Statistical Inference for Time Series

Asymptotic Theory of Statistical Inference for Time Series PDF Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146121162X
Category : Mathematics
Languages : en
Pages : 671

Book Description
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Gaussian Random Processes

Gaussian Random Processes PDF Author: I.A. Ibragimov
Publisher: Springer Science & Business Media
ISBN: 1461262755
Category : Mathematics
Languages : en
Pages : 285

Book Description
The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a "random process segment" and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known "strong mixing condition") as well as to describe the subclasses associated with "mixing rate". The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of "distinguishing a signal from stationary noise". Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.

Parameter Estimation in Stochastic Differential Equations

Parameter Estimation in Stochastic Differential Equations PDF Author: Jaya P. N. Bishwal
Publisher: Springer
ISBN: 3540744487
Category : Mathematics
Languages : en
Pages : 271

Book Description
Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 984

Book Description


Technical Report

Technical Report PDF Author:
Publisher:
ISBN:
Category : Operations research
Languages : en
Pages : 272

Book Description


Selected Proceedings of the Symposium on Inference for Stochastic Processes

Selected Proceedings of the Symposium on Inference for Stochastic Processes PDF Author: Ishwar V. Basawa
Publisher: IMS
ISBN: 9780940600515
Category : Mathematics
Languages : en
Pages : 370

Book Description


Statistical Inferences for Stochasic Processes

Statistical Inferences for Stochasic Processes PDF Author: Ishwar V. Basawa
Publisher: Elsevier
ISBN: 1483296148
Category : Mathematics
Languages : en
Pages : 455

Book Description
Stats Inference Stochasic Process

NBS Special Publication

NBS Special Publication PDF Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 574

Book Description


Advances in Theoretical and Applied Statistics

Advances in Theoretical and Applied Statistics PDF Author: Nicola Torelli
Publisher: Springer Science & Business Media
ISBN: 3642355889
Category : Mathematics
Languages : en
Pages : 538

Book Description
This volume includes contributions selected after a double blind review process and presented as a preliminary version at the 45th Meeting of the Italian Statistical Society. The papers provide significant and innovative original contributions and cover a broad range of topics including: statistical theory; methods for time series and spatial data; statistical modeling and data analysis; survey methodology and official statistics; analysis of social, demographic and health data; and economic statistics and econometrics.

Higher Order Asymptotic Theory for Time Series Analysis

Higher Order Asymptotic Theory for Time Series Analysis PDF Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146123154X
Category : Mathematics
Languages : en
Pages : 169

Book Description
The initial basis of this book was a series of my research papers, that I listed in References. I have many people to thank for the book's existence. Regarding higher order asymptotic efficiency I thank Professors Kei Takeuchi and M. Akahira for their many comments. I used their concept of efficiency for time series analysis. During the summer of 1983, I had an opportunity to visit The Australian National University, and could elucidate the third-order asymptotics of some estimators. I express my sincere thanks to Professor E.J. Hannan for his warmest encouragement and kindness. Multivariate time series analysis seems an important topic. In 1986 I visited Center for Mul tivariate Analysis, University of Pittsburgh. I received a lot of impact from multivariate analysis, and applied many multivariate methods to the higher order asymptotic theory of vector time series. I am very grateful to the late Professor P.R. Krishnaiah for his cooperation and kindness. In Japan my research was mainly performed in Hiroshima University. There is a research group of statisticians who are interested in the asymptotic expansions in statistics. Throughout this book I often used the asymptotic expansion techniques. I thank all the members of this group, especially Professors Y. Fujikoshi and K. Maekawa foItheir helpful discussion. When I was a student of Osaka University I learned multivariate analysis and time series analysis from Professors Masashi Okamoto and T. Nagai, respectively. It is a pleasure to thank them for giving me much of research background.