Author: R.S. Pierce
Publisher: Springer Science & Business Media
ISBN: 1475701632
Category : Mathematics
Languages : en
Pages : 448
Book Description
For many people there is life after 40; for some mathematicians there is algebra after Galois theory. The objective ofthis book is to prove the latter thesis. It is written primarily for students who have assimilated substantial portions of a standard first year graduate algebra textbook, and who have enjoyed the experience. The material that is presented here should not be fatal if it is swallowed by persons who are not members of that group. The objects of our attention in this book are associative algebras, mostly the ones that are finite dimensional over a field. This subject is ideal for a textbook that will lead graduate students into a specialized field of research. The major theorems on associative algebras inc1ude some of the most splendid results of the great heros of algebra: Wedderbum, Artin, Noether, Hasse, Brauer, Albert, Jacobson, and many others. The process of refine ment and c1arification has brought the proof of the gems in this subject to a level that can be appreciated by students with only modest background. The subject is almost unique in the wide range of contacts that it makes with other parts of mathematics. The study of associative algebras con tributes to and draws from such topics as group theory, commutative ring theory, field theory, algebraic number theory, algebraic geometry, homo logical algebra, and category theory. It even has some ties with parts of applied mathematics.
Associative Algebras
Elements of the Representation Theory of Associative Algebras: Volume 1
Author: Ibrahim Assem
Publisher: Cambridge University Press
ISBN: 9780521584234
Category : Mathematics
Languages : en
Pages : 480
Book Description
This is the first of a two-volume set that provides a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The subject is presented from the perspective of linear representations of quivers and homological algebra. The treatment is self-contained and provides an elementary and up-to-date introduction to the subject using quiver-theoretical techniques and the theory of almost split sequences as well as tilting theory and the use of integral quadratic forms. Much of this material has never appeared before in book form. The book is primarily addressed to graduate students starting research in the representation theory of algebras, but it will also be of interest to mathematicians in other fields. The text includes many illustrative examples and a large number of exercises at the end of each of the ten chapters. Proofs are presented in complete detail, making the book suitable for courses, seminars, and self-study. Book jacket.
Publisher: Cambridge University Press
ISBN: 9780521584234
Category : Mathematics
Languages : en
Pages : 480
Book Description
This is the first of a two-volume set that provides a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The subject is presented from the perspective of linear representations of quivers and homological algebra. The treatment is self-contained and provides an elementary and up-to-date introduction to the subject using quiver-theoretical techniques and the theory of almost split sequences as well as tilting theory and the use of integral quadratic forms. Much of this material has never appeared before in book form. The book is primarily addressed to graduate students starting research in the representation theory of algebras, but it will also be of interest to mathematicians in other fields. The text includes many illustrative examples and a large number of exercises at the end of each of the ten chapters. Proofs are presented in complete detail, making the book suitable for courses, seminars, and self-study. Book jacket.
An Introduction to Nonassociative Algebras
Author: Richard D. Schafer
Publisher: Courier Dover Publications
ISBN: 0486164179
Category : Mathematics
Languages : en
Pages : 177
Book Description
Concise graduate-level introductory study presents some of the important ideas and results in the theory of nonassociative algebras. Places particular emphasis on alternative and (commutative) Jordan algebras. 1966 edition.
Publisher: Courier Dover Publications
ISBN: 0486164179
Category : Mathematics
Languages : en
Pages : 177
Book Description
Concise graduate-level introductory study presents some of the important ideas and results in the theory of nonassociative algebras. Places particular emphasis on alternative and (commutative) Jordan algebras. 1966 edition.
Associative and Non-Associative Algebras and Applications
Author: Mercedes Siles Molina
Publisher: Springer Nature
ISBN: 3030352560
Category : Mathematics
Languages : en
Pages : 338
Book Description
This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.
Publisher: Springer Nature
ISBN: 3030352560
Category : Mathematics
Languages : en
Pages : 338
Book Description
This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.
Representation Theory of Finite Groups and Associative Algebras
Author: Charles W. Curtis
Publisher: American Mathematical Soc.
ISBN: 0821840665
Category : Mathematics
Languages : en
Pages : 714
Book Description
Provides an introduction to various aspects of the representation theory of finite groups. This book covers such topics as general non-commutative algebras, Frobenius algebras, representations over non-algebraically closed fields and fields of non-zero characteristic, and integral representations.
Publisher: American Mathematical Soc.
ISBN: 0821840665
Category : Mathematics
Languages : en
Pages : 714
Book Description
Provides an introduction to various aspects of the representation theory of finite groups. This book covers such topics as general non-commutative algebras, Frobenius algebras, representations over non-algebraically closed fields and fields of non-zero characteristic, and integral representations.
Introduction to Octonion and Other Non-Associative Algebras in Physics
Author: Susumu Okubo
Publisher: Cambridge University Press
ISBN: 0521472156
Category : Mathematics
Languages : en
Pages : 152
Book Description
In this book, the author aims to familiarize researchers and graduate students in both physics and mathematics with the application of non-associative algebras in physics.Topics covered by the author range from algebras of observables in quantum mechanics, angular momentum and octonions, division algebra, triple-linear products and YangSHBaxter equations. The author also covers non-associative gauge theoretic reformulation of Einstein's general relativity theory and so on. Much of the material found in this book is not available in other standard works.
Publisher: Cambridge University Press
ISBN: 0521472156
Category : Mathematics
Languages : en
Pages : 152
Book Description
In this book, the author aims to familiarize researchers and graduate students in both physics and mathematics with the application of non-associative algebras in physics.Topics covered by the author range from algebras of observables in quantum mechanics, angular momentum and octonions, division algebra, triple-linear products and YangSHBaxter equations. The author also covers non-associative gauge theoretic reformulation of Einstein's general relativity theory and so on. Much of the material found in this book is not available in other standard works.
Introduction to Representation Theory
Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Non-commutative Algebraic Geometry
Author: F.M.J. van Oystaeyen
Publisher: Springer
ISBN: 3540386017
Category : Mathematics
Languages : en
Pages : 408
Book Description
Publisher: Springer
ISBN: 3540386017
Category : Mathematics
Languages : en
Pages : 408
Book Description
Rings and Things and a Fine Array of Twentieth Century Associative Algebra
Author: Carl Clifton Faith
Publisher: American Mathematical Soc.
ISBN: 0821836722
Category : Mathematics
Languages : en
Pages : 513
Book Description
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras Goldie, and others. A special feature of the book is the in-depth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians. Two of the author's prior works, Algebra: Rings, Modules and Categories, I and II (Springer-Verlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those bibliography of over 1,600 references and is exhaustively indexed. In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in ''Part II: Snapshots of fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-Nato Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona. Comments on the first edition: ''Researchers in algebra should find it both full references as to the origin and development of the theorem ... I know of no other work in print which does this as thoroughly and as broadly.'' --John O'Neill, University of Detroit at Mercy '' 'Part II: Snapshots of Mathematicians of my age and younger will relish reading 'Snapshots'.'' --James A. Huckaba, University of Missouri-Columbia
Publisher: American Mathematical Soc.
ISBN: 0821836722
Category : Mathematics
Languages : en
Pages : 513
Book Description
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras Goldie, and others. A special feature of the book is the in-depth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians. Two of the author's prior works, Algebra: Rings, Modules and Categories, I and II (Springer-Verlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those bibliography of over 1,600 references and is exhaustively indexed. In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in ''Part II: Snapshots of fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-Nato Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona. Comments on the first edition: ''Researchers in algebra should find it both full references as to the origin and development of the theorem ... I know of no other work in print which does this as thoroughly and as broadly.'' --John O'Neill, University of Detroit at Mercy '' 'Part II: Snapshots of Mathematicians of my age and younger will relish reading 'Snapshots'.'' --James A. Huckaba, University of Missouri-Columbia
Collected Mathematical Papers: Associative algebras and Riemann matrices
Author: Abraham Adrian Albert
Publisher: American Mathematical Soc.
ISBN: 9780821870556
Category : Associative algebras
Languages : en
Pages : 824
Book Description
This book contains the collected works of A. Adrian Albert, a leading algebraist of the twentieth century. Albert made many important contributions to the theory of the Brauer group and central simple algeras, Riemann matrices, nonassociative algebras and other topics. Part 1 focuses on associative algebras and Riemann matrices part 2 on nonassociative algebras and miscellany. Because much of Albert's work remains of vital interest in contemporary research, this volume will interst mathematicians in a variety of areas.
Publisher: American Mathematical Soc.
ISBN: 9780821870556
Category : Associative algebras
Languages : en
Pages : 824
Book Description
This book contains the collected works of A. Adrian Albert, a leading algebraist of the twentieth century. Albert made many important contributions to the theory of the Brauer group and central simple algeras, Riemann matrices, nonassociative algebras and other topics. Part 1 focuses on associative algebras and Riemann matrices part 2 on nonassociative algebras and miscellany. Because much of Albert's work remains of vital interest in contemporary research, this volume will interst mathematicians in a variety of areas.