Association Rule Hiding for Data Mining PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Association Rule Hiding for Data Mining PDF full book. Access full book title Association Rule Hiding for Data Mining by Aris Gkoulalas-Divanis. Download full books in PDF and EPUB format.

Association Rule Hiding for Data Mining

Association Rule Hiding for Data Mining PDF Author: Aris Gkoulalas-Divanis
Publisher: Springer Science & Business Media
ISBN: 1441965696
Category : Computers
Languages : en
Pages : 159

Book Description
Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique in data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the problem of "hiding" sensitive association rules, and introduces a number of heuristic solutions. Exact solutions of increased time complexity that have been proposed recently are presented, as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a thorough discussion regarding closely related problems (inverse frequent item set mining, data reconstruction approaches, etc.). Unsolved problems, future directions and specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.

Association Rule Hiding for Data Mining

Association Rule Hiding for Data Mining PDF Author: Aris Gkoulalas-Divanis
Publisher: Springer Science & Business Media
ISBN: 1441965696
Category : Computers
Languages : en
Pages : 159

Book Description
Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique in data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the problem of "hiding" sensitive association rules, and introduces a number of heuristic solutions. Exact solutions of increased time complexity that have been proposed recently are presented, as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a thorough discussion regarding closely related problems (inverse frequent item set mining, data reconstruction approaches, etc.). Unsolved problems, future directions and specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.

Research Anthology on Privatizing and Securing Data

Research Anthology on Privatizing and Securing Data PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799889556
Category : Computers
Languages : en
Pages : 2188

Book Description
With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.

Association Rule Hiding for Data Mining

Association Rule Hiding for Data Mining PDF Author: Aris Gkoulalas-Divanis
Publisher:
ISBN: 9781441965707
Category :
Languages : en
Pages :

Book Description
Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique on data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the optimization problem of "hiding" sensitive association rules which due to its combinatorial nature admits a number of heuristic solutions that will be proposed and presented in this book. Exact solutions of increased time complexity that have been proposed recently are also presented as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a discussion regarding unsolved problems and future directions. Specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.

Intelligent Systems Design and Applications

Intelligent Systems Design and Applications PDF Author: Ajith Abraham
Publisher: Springer
ISBN: 3030166600
Category : Technology & Engineering
Languages : en
Pages : 1135

Book Description
This book highlights recent research on Intelligent Systems and Nature Inspired Computing. It presents 212 selected papers from the 18th International Conference on Intelligent Systems Design and Applications (ISDA 2018) and the 10th World Congress on Nature and Biologically Inspired Computing (NaBIC), which was held at VIT University, India. ISDA-NaBIC 2018 was a premier conference in the field of Computational Intelligence and brought together researchers, engineers and practitioners whose work involved intelligent systems and their applications in industry and the “real world.” Including contributions by authors from over 40 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.

Privacy Preserving Data Mining

Privacy Preserving Data Mining PDF Author: Jaideep Vaidya
Publisher: Springer Science & Business Media
ISBN: 0387294899
Category : Computers
Languages : en
Pages : 124

Book Description
Privacy preserving data mining implies the "mining" of knowledge from distributed data without violating the privacy of the individual/corporations involved in contributing the data. This volume provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. Crystallizing much of the underlying foundation, the book aims to inspire further research in this new and growing area. Privacy Preserving Data Mining is intended to be accessible to industry practitioners and policy makers, to help inform future decision making and legislation, and to serve as a useful technical reference.

Frequent Pattern Mining

Frequent Pattern Mining PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319078216
Category : Computers
Languages : en
Pages : 480

Book Description
This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.

Rare Association Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection

Rare Association Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection PDF Author: Koh, Yun Sing
Publisher: IGI Global
ISBN: 1605667552
Category : Business & Economics
Languages : en
Pages : 319

Book Description
"This book provides readers with an in-depth compendium of current issues, trends, and technologies in association rule mining"--Provided by publisher.

Association Rule Mining

Association Rule Mining PDF Author: Chengqi Zhang
Publisher:
ISBN: 9783662165751
Category :
Languages : en
Pages : 258

Book Description


Trends and Applications in Knowledge Discovery and Data Mining

Trends and Applications in Knowledge Discovery and Data Mining PDF Author: Wen-Chih Peng
Publisher: Springer
ISBN: 3319131869
Category : Computers
Languages : en
Pages : 835

Book Description
This book constitutes the refereed proceedings at PAKDD Workshops 2014, held in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Tainan, Taiwan, in May 2014. The 73 revised papers presented were carefully reviewed and selected from 179 submissions. The workshops affiliated with PAKDD 2014 include: Data Analytics for Targeted Healthcare, DANTH; Data Mining and Decision Analytics for Public Health and Wellness, DMDA-Health; Biologically Inspired Data Mining Techniques, BDM; Mobile Data Management, Mining, and Computing on Social Networks, MobiSocial; Big Data Science and Engineering on E-Commerce, BigEC; Cloud Service Discovery, CloudSD; Mobile Sensing, Mining and Visualization for Human Behavior Inferences, MSMV-HBI; Scalable Dats Analytics: Theory and Algorithms, SDA; Algorithms for Large-Scale Information Processing in Knowledge Discovery, ALSIP; Data Mining in Social Networks, SocNet; Data Mining in Biomedical Informatics and Healthcare, DMBIH; and Pattern Mining and Application of Big Data, BigPMA.

Privacy-Preserving Data Mining

Privacy-Preserving Data Mining PDF Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 0387709924
Category : Computers
Languages : en
Pages : 524

Book Description
Advances in hardware technology have increased the capability to store and record personal data. This has caused concerns that personal data may be abused. This book proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. The book is designed for researchers, professors, and advanced-level students in computer science, but is also suitable for practitioners in industry.