Artificial Intelligence and Scientific Method PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Artificial Intelligence and Scientific Method PDF full book. Access full book title Artificial Intelligence and Scientific Method by Donald Gillies. Download full books in PDF and EPUB format.

Artificial Intelligence and Scientific Method

Artificial Intelligence and Scientific Method PDF Author: Donald Gillies
Publisher: OUP Oxford
ISBN: 9780198751588
Category : Computers
Languages : en
Pages : 190

Book Description
Artificial Intelligence and Scientific Method examines the remarkable advances made in the field of AI over the past twenty years, discussing their profound implications for philosophy. Taking a clear, non-technical approach, Donald Gillies shows how current views on scientific method are challenged by this recent research, and suggests a new framework for the study of logic. Finally, he draws on work by such seminal thinkers as Bacon, Gödel, Popper, Penrose, and Lucas, to address the hotly contested question of whether computers might become intellectually superior to human beings.

Artificial Intelligence and Scientific Method

Artificial Intelligence and Scientific Method PDF Author: Donald Gillies
Publisher: OUP Oxford
ISBN: 9780198751588
Category : Computers
Languages : en
Pages : 190

Book Description
Artificial Intelligence and Scientific Method examines the remarkable advances made in the field of AI over the past twenty years, discussing their profound implications for philosophy. Taking a clear, non-technical approach, Donald Gillies shows how current views on scientific method are challenged by this recent research, and suggests a new framework for the study of logic. Finally, he draws on work by such seminal thinkers as Bacon, Gödel, Popper, Penrose, and Lucas, to address the hotly contested question of whether computers might become intellectually superior to human beings.

A Human's Guide to Machine Intelligence

A Human's Guide to Machine Intelligence PDF Author: Kartik Hosanagar
Publisher: Penguin
ISBN: 0525560904
Category : Business & Economics
Languages : en
Pages : 274

Book Description
A Wharton professor and tech entrepreneur examines how algorithms and artificial intelligence are starting to run every aspect of our lives, and how we can shape the way they impact us Through the technology embedded in almost every major tech platform and every web-enabled device, algorithms and the artificial intelligence that underlies them make a staggering number of everyday decisions for us, from what products we buy, to where we decide to eat, to how we consume our news, to whom we date, and how we find a job. We've even delegated life-and-death decisions to algorithms--decisions once made by doctors, pilots, and judges. In his new book, Kartik Hosanagar surveys the brave new world of algorithmic decision-making and reveals the potentially dangerous biases they can give rise to as they increasingly run our lives. He makes the compelling case that we need to arm ourselves with a better, deeper, more nuanced understanding of the phenomenon of algorithmic thinking. And he gives us a route in, pointing out that algorithms often think a lot like their creators--that is, like you and me. Hosanagar draws on his experiences designing algorithms professionally--as well as on history, computer science, and psychology--to explore how algorithms work and why they occasionally go rogue, what drives our trust in them, and the many ramifications of algorithmic decision-making. He examines episodes like Microsoft's chatbot Tay, which was designed to converse on social media like a teenage girl, but instead turned sexist and racist; the fatal accidents of self-driving cars; and even our own common, and often frustrating, experiences on services like Netflix and Amazon. A Human's Guide to Machine Intelligence is an entertaining and provocative look at one of the most important developments of our time and a practical user's guide to this first wave of practical artificial intelligence.

Scientific Discovery

Scientific Discovery PDF Author: Pat Langley
Publisher: MIT Press
ISBN: 9780262620529
Category : Computers
Languages : en
Pages : 374

Book Description
Scientific discovery is often regarded as romantic and creative--and hence unanalyzable--whereas the everyday process of verifying discoveries is sober and more suited to analysis. Yet this fascinating exploration of how scientific work proceeds argues that however sudden the moment of discovery may seem, the discovery process can be described and modeled. Using the methods and concepts of contemporary information-processing psychology (or cognitive science) the authors develop a series of artificial-intelligence programs that can simulate the human thought processes used to discover scientific laws. The programs--BACON, DALTON, GLAUBER, and STAHL--are all largely data-driven, that is, when presented with series of chemical or physical measurements they search for uniformities and linking elements, generating and checking hypotheses and creating new concepts as they go along. Scientific Discovery examines the nature of scientific research and reviews the arguments for and against a normative theory of discovery; describes the evolution of the BACON programs, which discover quantitative empirical laws and invent new concepts; presents programs that discover laws in qualitative and quantitative data; and ties the results together, suggesting how a combined and extended program might find research problems, invent new instruments, and invent appropriate problem representations. Numerous prominent historical examples of discoveries from physics and chemistry are used as tests for the programs and anchor the discussion concretely in the history of science.

Knowledge Guided Machine Learning

Knowledge Guided Machine Learning PDF Author: Anuj Karpatne
Publisher: CRC Press
ISBN: 1000598101
Category : Business & Economics
Languages : en
Pages : 442

Book Description
Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry

The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry PDF Author: Stephanie K. Ashenden
Publisher: Academic Press
ISBN: 0128204494
Category : Computers
Languages : en
Pages : 266

Book Description
The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide

Artificial Intelligence in Drug Discovery

Artificial Intelligence in Drug Discovery PDF Author: Nathan Brown
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425

Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.

Funding a Revolution

Funding a Revolution PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309062780
Category : Computers
Languages : en
Pages : 300

Book Description
The past 50 years have witnessed a revolution in computing and related communications technologies. The contributions of industry and university researchers to this revolution are manifest; less widely recognized is the major role the federal government played in launching the computing revolution and sustaining its momentum. Funding a Revolution examines the history of computing since World War II to elucidate the federal government's role in funding computing research, supporting the education of computer scientists and engineers, and equipping university research labs. It reviews the economic rationale for government support of research, characterizes federal support for computing research, and summarizes key historical advances in which government-sponsored research played an important role. Funding a Revolution contains a series of case studies in relational databases, the Internet, theoretical computer science, artificial intelligence, and virtual reality that demonstrate the complex interactions among government, universities, and industry that have driven the field. It offers a series of lessons that identify factors contributing to the success of the nation's computing enterprise and the government's role within it.

AI for Scientific Discovery

AI for Scientific Discovery PDF Author: Janna Hastings
Publisher: CRC Press
ISBN: 100088516X
Category : Computers
Languages : en
Pages : 99

Book Description
AI for Scientific Discovery provides an accessible introduction to the wide-ranging applications of artificial intelligence (AI) technologies in scientific research and discovery across the full breadth of scientific disciplines. AI technologies support discovery science in multiple ways. They support literature management and synthesis, allowing the wealth of what has already been discovered and reported on to be integrated and easily accessed. They play a central role in data analysis and interpretation in the context of what is called ‘data science’. AI is also helping to combat the reproducibility crisis in scientific research by underpinning the discovery process with AI-enabled standards and pipelines and supporting the management of large-scale data and knowledge resources so that they can be shared and integrated and serve as a background ‘knowledge ecosystem’ into which new discoveries can be embedded. However, there are limitations to what AI can achieve and its outputs can be biased and confounded and thus should not be blindly trusted. The latest generation of hybrid and ‘human-in-the-loop’ AI technologies have as their objective a balance between human inputs and insights and the power of number-crunching and statistical inference at a massive scale that AI technologies are best at.

Artificial Intelligence for Scientific Discoveries

Artificial Intelligence for Scientific Discoveries PDF Author: Raban Iten
Publisher: Springer Nature
ISBN: 3031270193
Category : Science
Languages : en
Pages : 168

Book Description
Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The automation of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the automation of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist's reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus' conclusion that the solar system is heliocentric.