Author: George Yuri Rainich
Publisher: Courier Corporation
ISBN: 0486783251
Category : Science
Languages : en
Pages : 193
Book Description
Based on the ideas of Einstein and Minkowski, this concise treatment is derived from the author's many years of teaching the mathematics of relativity at the University of Michigan. Geared toward advanced undergraduates and graduate students of physics, the text covers old physics, new geometry, special relativity, curved space, and general relativity. Beginning with a discussion of the inverse square law in terms of simple calculus, the treatment gradually introduces increasingly complicated situations and more sophisticated mathematical tools. Changes in fundamental concepts, which characterize relativity theory, and the refinements of mathematical technique are incorporated as necessary. The presentation thus offers an easier approach without sacrifice of rigor. Dover (2014) republication of the edition published by John Wiley & Sons, New York, 1950. See every Dover book in print at www.doverpublications.com
Mathematics of Relativity
Author: George Yuri Rainich
Publisher: Courier Corporation
ISBN: 0486783251
Category : Science
Languages : en
Pages : 193
Book Description
Based on the ideas of Einstein and Minkowski, this concise treatment is derived from the author's many years of teaching the mathematics of relativity at the University of Michigan. Geared toward advanced undergraduates and graduate students of physics, the text covers old physics, new geometry, special relativity, curved space, and general relativity. Beginning with a discussion of the inverse square law in terms of simple calculus, the treatment gradually introduces increasingly complicated situations and more sophisticated mathematical tools. Changes in fundamental concepts, which characterize relativity theory, and the refinements of mathematical technique are incorporated as necessary. The presentation thus offers an easier approach without sacrifice of rigor. Dover (2014) republication of the edition published by John Wiley & Sons, New York, 1950. See every Dover book in print at www.doverpublications.com
Publisher: Courier Corporation
ISBN: 0486783251
Category : Science
Languages : en
Pages : 193
Book Description
Based on the ideas of Einstein and Minkowski, this concise treatment is derived from the author's many years of teaching the mathematics of relativity at the University of Michigan. Geared toward advanced undergraduates and graduate students of physics, the text covers old physics, new geometry, special relativity, curved space, and general relativity. Beginning with a discussion of the inverse square law in terms of simple calculus, the treatment gradually introduces increasingly complicated situations and more sophisticated mathematical tools. Changes in fundamental concepts, which characterize relativity theory, and the refinements of mathematical technique are incorporated as necessary. The presentation thus offers an easier approach without sacrifice of rigor. Dover (2014) republication of the edition published by John Wiley & Sons, New York, 1950. See every Dover book in print at www.doverpublications.com
Greek Musical Writings: Volume 2, Harmonic and Acoustic Theory
Author: Andrew Barker
Publisher: Cambridge University Press
ISBN: 0521616972
Category : Music
Languages : en
Pages : 596
Book Description
Vol. 1: The musician an d his art ; vol. 2: Harmonic and acoustic theory
Publisher: Cambridge University Press
ISBN: 0521616972
Category : Music
Languages : en
Pages : 596
Book Description
Vol. 1: The musician an d his art ; vol. 2: Harmonic and acoustic theory
Analytical Mechanics: A Comprehensive Treatise On The Dynamics Of Constrained Systems (Reprint Edition)
Author: John G Papastavridis
Publisher: World Scientific
ISBN: 9814590363
Category : Mathematics
Languages : en
Pages : 1417
Book Description
This is a comprehensive, state-of-the-art, treatise on the energetic mechanics of Lagrange and Hamilton, that is, classical analytical dynamics, and its principal applications to constrained systems (contact, rolling, and servoconstraints). It is a book on advanced dynamics from a unified viewpoint, namely, the kinetic principle of virtual work, or principle of Lagrange. As such, it continues, renovates, and expands the grand tradition laid by such mechanics masters as Appell, Maggi, Whittaker, Heun, Hamel, Chetaev, Synge, Pars, Luré, Gantmacher, Neimark, and Fufaev. Many completely solved examples complement the theory, along with many problems (all of the latter with their answers and many of them with hints). Although written at an advanced level, the topics covered in this 1400-page volume (the most extensive ever written on analytical mechanics) are eminently readable and inclusive. It is of interest to engineers, physicists, and mathematicians; advanced undergraduate and graduate students and teachers; researchers and professionals; all will find this encyclopedic work an extraordinary asset; for classroom use or self-study. In this edition, corrections (of the original edition, 2002) have been incorporated.
Publisher: World Scientific
ISBN: 9814590363
Category : Mathematics
Languages : en
Pages : 1417
Book Description
This is a comprehensive, state-of-the-art, treatise on the energetic mechanics of Lagrange and Hamilton, that is, classical analytical dynamics, and its principal applications to constrained systems (contact, rolling, and servoconstraints). It is a book on advanced dynamics from a unified viewpoint, namely, the kinetic principle of virtual work, or principle of Lagrange. As such, it continues, renovates, and expands the grand tradition laid by such mechanics masters as Appell, Maggi, Whittaker, Heun, Hamel, Chetaev, Synge, Pars, Luré, Gantmacher, Neimark, and Fufaev. Many completely solved examples complement the theory, along with many problems (all of the latter with their answers and many of them with hints). Although written at an advanced level, the topics covered in this 1400-page volume (the most extensive ever written on analytical mechanics) are eminently readable and inclusive. It is of interest to engineers, physicists, and mathematicians; advanced undergraduate and graduate students and teachers; researchers and professionals; all will find this encyclopedic work an extraordinary asset; for classroom use or self-study. In this edition, corrections (of the original edition, 2002) have been incorporated.
Classical Potential Theory and Its Probabilistic Counterpart
Author: J. L. Doob
Publisher: Springer Science & Business Media
ISBN: 1461252083
Category : Mathematics
Languages : en
Pages : 865
Book Description
Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe withjaun diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory. For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) involving the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and so on.
Publisher: Springer Science & Business Media
ISBN: 1461252083
Category : Mathematics
Languages : en
Pages : 865
Book Description
Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe withjaun diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory. For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) involving the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and so on.
Theta Functions-Bowdoin 1987, Part 2
Author: Leon Ehrenpreis
Publisher: American Mathematical Soc.
ISBN: 0821814842
Category : Mathematics
Languages : en
Pages : 378
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821814842
Category : Mathematics
Languages : en
Pages : 378
Book Description
Mathematical Analysis I
Author: V. A. Zorich
Publisher: Springer
ISBN: 3662487926
Category : Mathematics
Languages : en
Pages : 630
Book Description
This second edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. The first volume constitutes a complete course in one-variable calculus along with the multivariable differential calculus elucidated in an up-to-date, clear manner, with a pleasant geometric and natural sciences flavor.
Publisher: Springer
ISBN: 3662487926
Category : Mathematics
Languages : en
Pages : 630
Book Description
This second edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems, and fresh applications to areas seldom touched on in textbooks on real analysis. The main difference between the second and first editions is the addition of a series of appendices to each volume. There are six of them in the first volume and five in the second. The subjects of these appendices are diverse. They are meant to be useful to both students (in mathematics and physics) and teachers, who may be motivated by different goals. Some of the appendices are surveys, both prospective and retrospective. The final survey establishes important conceptual connections between analysis and other parts of mathematics. The first volume constitutes a complete course in one-variable calculus along with the multivariable differential calculus elucidated in an up-to-date, clear manner, with a pleasant geometric and natural sciences flavor.
Canadian Books in Print. Author and Title Index
Author:
Publisher: University of Toronto Press
ISBN:
Category : Canada Imprints
Languages : en
Pages : 1610
Book Description
Publisher: University of Toronto Press
ISBN:
Category : Canada Imprints
Languages : en
Pages : 1610
Book Description
Eigenfunctions of the Laplacian on a Riemannian Manifold
Author: Steve Zelditch
Publisher: American Mathematical Soc.
ISBN: 1470410370
Category : Mathematics
Languages : en
Pages : 410
Book Description
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.
Publisher: American Mathematical Soc.
ISBN: 1470410370
Category : Mathematics
Languages : en
Pages : 410
Book Description
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.
Mathematical Thought From Ancient to Modern Times, Volume 2
Author: Morris Kline
Publisher: Oxford University Press
ISBN: 0199840423
Category : Mathematics
Languages : en
Pages : 468
Book Description
This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.
Publisher: Oxford University Press
ISBN: 0199840423
Category : Mathematics
Languages : en
Pages : 468
Book Description
This comprehensive history traces the development of mathematical ideas and the careers of the men responsible for them. Volume 1 looks at the disciplines origins in Babylon and Egypt, the creation of geometry and trigonometry by the Greeks, and the role of mathematics in the medieval and early modern periods. Volume 2 focuses on calculus, the rise of analysis in the 19th century, and the number theories of Dedekind and Dirichlet. The concluding volume covers the revival of projective geometry, the emergence of abstract algebra, the beginnings of topology, and the influence of Godel on recent mathematical study.
Philosophy of Mathematics
Author:
Publisher: Elsevier
ISBN: 0080930581
Category : Philosophy
Languages : en
Pages : 735
Book Description
One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mathematics. Over the centuries a number of reasonably well-defined positions about the nature of mathematics have been developed and it is these positions (both historical and current) that are surveyed in the current volume. Traditional theories (Platonism, Aristotelianism, Kantianism), as well as dominant modern theories (logicism, formalism, constructivism, fictionalism, etc.), are all analyzed and evaluated. Leading-edge research in related fields (set theory, computability theory, probability theory, paraconsistency) is also discussed. The result is a handbook that not only provides a comprehensive overview of recent developments but that also serves as an indispensable resource for anyone wanting to learn about current developments in the philosophy of mathematics.-Comprehensive coverage of all main theories in the philosophy of mathematics-Clearly written expositions of fundamental ideas and concepts-Definitive discussions by leading researchers in the field-Summaries of leading-edge research in related fields (set theory, computability theory, probability theory, paraconsistency) are also included
Publisher: Elsevier
ISBN: 0080930581
Category : Philosophy
Languages : en
Pages : 735
Book Description
One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mathematics. Over the centuries a number of reasonably well-defined positions about the nature of mathematics have been developed and it is these positions (both historical and current) that are surveyed in the current volume. Traditional theories (Platonism, Aristotelianism, Kantianism), as well as dominant modern theories (logicism, formalism, constructivism, fictionalism, etc.), are all analyzed and evaluated. Leading-edge research in related fields (set theory, computability theory, probability theory, paraconsistency) is also discussed. The result is a handbook that not only provides a comprehensive overview of recent developments but that also serves as an indispensable resource for anyone wanting to learn about current developments in the philosophy of mathematics.-Comprehensive coverage of all main theories in the philosophy of mathematics-Clearly written expositions of fundamental ideas and concepts-Definitive discussions by leading researchers in the field-Summaries of leading-edge research in related fields (set theory, computability theory, probability theory, paraconsistency) are also included