Author: Serge Lang
Publisher:
ISBN: 9783540967873
Category : Mathematics
Languages : en
Pages : 475
Book Description
Basic Mathematics
Author: Serge Lang
Publisher:
ISBN: 9783540967873
Category : Mathematics
Languages : en
Pages : 475
Book Description
Publisher:
ISBN: 9783540967873
Category : Mathematics
Languages : en
Pages : 475
Book Description
Basic Maths For Dummies
Author: Colin Beveridge
Publisher: John Wiley & Sons
ISBN: 111997562X
Category : Mathematics
Languages : en
Pages : 397
Book Description
Whether you are returning to school, studying for an adult numeracy test, helping your kids with homework, or seeking the confidence that a firm maths foundation provides in everyday encounters, Basic Maths For Dummies, UK Edition, provides the content you need to improve your basic maths skills. Based upon the Adult Numeracy Core Curriculum, this title covers such topics as: Getting started with the building blocks of maths and setting yourself up for success Dealing with decimals, percentages and tackling fractions without fear Sizing Up weights, measures, and shapes How to handle statistics and gauge probability Filled with real-world examples and written by a PhD-level mathematician who specialises in tutoring adults and students, Basic Maths For Dummies also provides practical advice on overcoming maths anxiety and a host of tips, tricks, and memory aids that make learning maths (almost) painless - and even fun.
Publisher: John Wiley & Sons
ISBN: 111997562X
Category : Mathematics
Languages : en
Pages : 397
Book Description
Whether you are returning to school, studying for an adult numeracy test, helping your kids with homework, or seeking the confidence that a firm maths foundation provides in everyday encounters, Basic Maths For Dummies, UK Edition, provides the content you need to improve your basic maths skills. Based upon the Adult Numeracy Core Curriculum, this title covers such topics as: Getting started with the building blocks of maths and setting yourself up for success Dealing with decimals, percentages and tackling fractions without fear Sizing Up weights, measures, and shapes How to handle statistics and gauge probability Filled with real-world examples and written by a PhD-level mathematician who specialises in tutoring adults and students, Basic Maths For Dummies also provides practical advice on overcoming maths anxiety and a host of tips, tricks, and memory aids that make learning maths (almost) painless - and even fun.
All the Mathematics You Missed
Author: Thomas A. Garrity
Publisher: 清华大学出版社有限公司
ISBN: 9787302090854
Category : Mathematics
Languages : en
Pages : 380
Book Description
Publisher: 清华大学出版社有限公司
ISBN: 9787302090854
Category : Mathematics
Languages : en
Pages : 380
Book Description
How To Learn And Memorize Math, Numbers, Equations, And Simple Arithmetic
Author: Anthony Metivier
Publisher: Createspace Independent Publishing Platform
ISBN: 9781503217041
Category :
Languages : en
Pages : 0
Book Description
If you've ever wanted to improve your ability to learn and memorize mathematical equations, formula, arithmetic and numbers by 100% ... 200% ... 300% (or more) using simple skills you can learn in under an hour (or less), then this may be the most important book you will ever read. How To Learn And Memorize Math With Proven Strategies Guess what? You're wasting time listening to the standard advice about learning math. You can't continue with "random acts of learning" as you study simple math, calculus and statistics formulas - at least not for long. The truth is that learning math and remembering numbers can be incredibly simple. You just need to know how. In How To Memorize Numbers, Equations And Simple Arithmetic, Anthony Metivier shows you everthing you need to develop the right skills, the right mindset and the right dedicated memorization strategy for memorizing any number or equation. The key to learning and memorizing math is to follow a model. You won't succeed without one. And your best bet is to supplement that math learning model with strong memory skills. Want To Eliminate The Pain and Frustration of Learning Math? Most of the suffering caused by learning math comes from "cognitive overload." There is a way to remove this frustration from your life forever. And ... ... If There Is A Quick Fix - This Is It! The information in this book will teach you: * Why memory techniques for math and numbers are like a bicycle everyone can ride (with some minor personal adjustments). * The real reason why no one should ever be squeamish about memorization or learning math. * Sample examples and illustrations that will show you exactly how and why these memory techniques and strategies work. * Unique approaches that will have you literally "tuning in" on the math concepts and formulas you are studying so that you can memorize and recall them with ease. Learn And Memorize Numbers, Equations And Formulas By The Dozens Memorizing formulas for arithmetic, calculus, physics and statistics is one of the greatest frustrations math learners face. But using the Memory Palace and visualization secrets revealed in this book, you'll learn: 1. How to visualize any number so that it literally pops out in your mind whenever you look for it. 2. How to use actors, other public figures and famous pieces of artwork to help you memorize math concepts, numbers and formulas. 3. Simple strategies for practicing recall so that you are relaxed during exams and can easily recall everything you've studied no matter how difficult. The Best Ways To Learn And Memorize Math What's the secret to success with using this book to memorize all the mathematical formulas, equations and numbers that you need to excel at math? It all starts with having a "system" for doing the necessary memorization activities. And that's why you need a proven plan for increasing your math knowledge. The good news is it's not hard to improve your approach to learning math. How To Memorize Numbers, Equations And Simple Arithmetic gives you amazing tools designed to speed up the process and get you solid results. Understand how the method taught in this book works and you'll make advanced strides in how you learn math quickly and in ways that are effective, elegant and fun. Would You Like To Know More? Download now and begin improving proving how you learn math TODAY! Scroll to the top of the page and select the "buy" button.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781503217041
Category :
Languages : en
Pages : 0
Book Description
If you've ever wanted to improve your ability to learn and memorize mathematical equations, formula, arithmetic and numbers by 100% ... 200% ... 300% (or more) using simple skills you can learn in under an hour (or less), then this may be the most important book you will ever read. How To Learn And Memorize Math With Proven Strategies Guess what? You're wasting time listening to the standard advice about learning math. You can't continue with "random acts of learning" as you study simple math, calculus and statistics formulas - at least not for long. The truth is that learning math and remembering numbers can be incredibly simple. You just need to know how. In How To Memorize Numbers, Equations And Simple Arithmetic, Anthony Metivier shows you everthing you need to develop the right skills, the right mindset and the right dedicated memorization strategy for memorizing any number or equation. The key to learning and memorizing math is to follow a model. You won't succeed without one. And your best bet is to supplement that math learning model with strong memory skills. Want To Eliminate The Pain and Frustration of Learning Math? Most of the suffering caused by learning math comes from "cognitive overload." There is a way to remove this frustration from your life forever. And ... ... If There Is A Quick Fix - This Is It! The information in this book will teach you: * Why memory techniques for math and numbers are like a bicycle everyone can ride (with some minor personal adjustments). * The real reason why no one should ever be squeamish about memorization or learning math. * Sample examples and illustrations that will show you exactly how and why these memory techniques and strategies work. * Unique approaches that will have you literally "tuning in" on the math concepts and formulas you are studying so that you can memorize and recall them with ease. Learn And Memorize Numbers, Equations And Formulas By The Dozens Memorizing formulas for arithmetic, calculus, physics and statistics is one of the greatest frustrations math learners face. But using the Memory Palace and visualization secrets revealed in this book, you'll learn: 1. How to visualize any number so that it literally pops out in your mind whenever you look for it. 2. How to use actors, other public figures and famous pieces of artwork to help you memorize math concepts, numbers and formulas. 3. Simple strategies for practicing recall so that you are relaxed during exams and can easily recall everything you've studied no matter how difficult. The Best Ways To Learn And Memorize Math What's the secret to success with using this book to memorize all the mathematical formulas, equations and numbers that you need to excel at math? It all starts with having a "system" for doing the necessary memorization activities. And that's why you need a proven plan for increasing your math knowledge. The good news is it's not hard to improve your approach to learning math. How To Memorize Numbers, Equations And Simple Arithmetic gives you amazing tools designed to speed up the process and get you solid results. Understand how the method taught in this book works and you'll make advanced strides in how you learn math quickly and in ways that are effective, elegant and fun. Would You Like To Know More? Download now and begin improving proving how you learn math TODAY! Scroll to the top of the page and select the "buy" button.
Discrete Mathematics and Applications
Author: Andrei M. Raigorodskii
Publisher: Springer Nature
ISBN: 3030558576
Category : Mathematics
Languages : en
Pages : 499
Book Description
Advances in discrete mathematics are presented in this book with applications in theoretical mathematics and interdisciplinary research. Each chapter presents new methods and techniques by leading experts. Unifying interdisciplinary applications, problems, and approaches of discrete mathematics, this book connects topics in graph theory, combinatorics, number theory, cryptography, dynamical systems, finance, optimization, and game theory. Graduate students and researchers in optimization, mathematics, computer science, economics, and physics will find the wide range of interdisciplinary topics, methods, and applications covered in this book engaging and useful.
Publisher: Springer Nature
ISBN: 3030558576
Category : Mathematics
Languages : en
Pages : 499
Book Description
Advances in discrete mathematics are presented in this book with applications in theoretical mathematics and interdisciplinary research. Each chapter presents new methods and techniques by leading experts. Unifying interdisciplinary applications, problems, and approaches of discrete mathematics, this book connects topics in graph theory, combinatorics, number theory, cryptography, dynamical systems, finance, optimization, and game theory. Graduate students and researchers in optimization, mathematics, computer science, economics, and physics will find the wide range of interdisciplinary topics, methods, and applications covered in this book engaging and useful.
How to Think Like a Mathematician
Author: Kevin Houston
Publisher: Cambridge University Press
ISBN: 1139477056
Category : Mathematics
Languages : en
Pages : 341
Book Description
Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
Publisher: Cambridge University Press
ISBN: 1139477056
Category : Mathematics
Languages : en
Pages : 341
Book Description
Looking for a head start in your undergraduate degree in mathematics? Maybe you've already started your degree and feel bewildered by the subject you previously loved? Don't panic! This friendly companion will ease your transition to real mathematical thinking. Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
The Princeton Companion to Mathematics
Author: Timothy Gowers
Publisher: Princeton University Press
ISBN: 1400830397
Category : Mathematics
Languages : en
Pages : 1057
Book Description
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger
Publisher: Princeton University Press
ISBN: 1400830397
Category : Mathematics
Languages : en
Pages : 1057
Book Description
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger
Introduction to Mathematical Thinking
Author: Keith J. Devlin
Publisher:
ISBN: 9780615653631
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
Publisher:
ISBN: 9780615653631
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
Concrete Mathematics
Author: Ronald L. Graham
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
A Beginner’s Guide to Discrete Mathematics
Author: W. D. Wallis
Publisher: Springer Science & Business Media
ISBN: 0817642692
Category : Combinatorics
Languages : en
Pages : 386
Book Description
This introduction to discrete mathematics is aimed primarily at undergraduates in mathematics and computer science at the freshmen and sophomore levels. The text has a distinctly applied orientation and begins with a survey of number systems and elementary set theory. Included are discussions of scientific notation and the representation of numbers in computers. Lists are presented as an example of data structures. An introduction to counting includes the Binomial Theorem and mathematical induction, which serves as a starting point for a brief study of recursion. The basics of probability theory are then covered.Graph study is discussed, including Euler and Hamilton cycles and trees. This is a vehicle for some easy proofs, as well as serving as another example of a data structure. Matrices and vectors are then defined. The book concludes with an introduction to cryptography, including the RSA cryptosystem, together with the necessary elementary number theory, e.g., Euclidean algorithm, Fermat's Little Theorem.Good examples occur throughout. At the end of every section there are two problem sets of equal difficulty. However, solutions are only given to the first set. References and index conclude the work.A math course at the college level is required to handle this text. College algebra would be the most helpful.
Publisher: Springer Science & Business Media
ISBN: 0817642692
Category : Combinatorics
Languages : en
Pages : 386
Book Description
This introduction to discrete mathematics is aimed primarily at undergraduates in mathematics and computer science at the freshmen and sophomore levels. The text has a distinctly applied orientation and begins with a survey of number systems and elementary set theory. Included are discussions of scientific notation and the representation of numbers in computers. Lists are presented as an example of data structures. An introduction to counting includes the Binomial Theorem and mathematical induction, which serves as a starting point for a brief study of recursion. The basics of probability theory are then covered.Graph study is discussed, including Euler and Hamilton cycles and trees. This is a vehicle for some easy proofs, as well as serving as another example of a data structure. Matrices and vectors are then defined. The book concludes with an introduction to cryptography, including the RSA cryptosystem, together with the necessary elementary number theory, e.g., Euclidean algorithm, Fermat's Little Theorem.Good examples occur throughout. At the end of every section there are two problem sets of equal difficulty. However, solutions are only given to the first set. References and index conclude the work.A math course at the college level is required to handle this text. College algebra would be the most helpful.