Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521
Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Introduction to Data Science
Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836
Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Big data
Author: Patricia Fernández, Eva (coord.)
Publisher: Editorial UOC
ISBN: 8491164146
Category : Computers
Languages : en
Pages : 94
Book Description
El big data, entendido como la gestión y el almacenamiento masivo de datos, es una tendencia por explotar a día de hoy. La industria audiovisual, consciente de ello, empieza a orientar estrategias de negocio con ideas de personalización de contenidos, segmentación de perfiles o predicción de tendencias. Comprender todas las posibilidades que nos ofrece el big data supone entender las dinámicas internas del negocio, así como las fuentes de datos de las que podemos extraer información y la interacción que podemos realizar con ellas. Y también nos permite formular mejores preguntas y tomar decisiones acertadas. Este libro ofrece un recorrido por el proceso de gestión de datos en la empresa, con introducción de explicaciones técnicas y especial atención a la toma de decisiones del business intelligence.
Publisher: Editorial UOC
ISBN: 8491164146
Category : Computers
Languages : en
Pages : 94
Book Description
El big data, entendido como la gestión y el almacenamiento masivo de datos, es una tendencia por explotar a día de hoy. La industria audiovisual, consciente de ello, empieza a orientar estrategias de negocio con ideas de personalización de contenidos, segmentación de perfiles o predicción de tendencias. Comprender todas las posibilidades que nos ofrece el big data supone entender las dinámicas internas del negocio, así como las fuentes de datos de las que podemos extraer información y la interacción que podemos realizar con ellas. Y también nos permite formular mejores preguntas y tomar decisiones acertadas. Este libro ofrece un recorrido por el proceso de gestión de datos en la empresa, con introducción de explicaciones técnicas y especial atención a la toma de decisiones del business intelligence.
Learning With Big Data
Author: Viktor Mayer-Schönberger
Publisher: HarperCollins
ISBN: 0544355504
Category : Education
Languages : en
Pages : 63
Book Description
Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology.
Publisher: HarperCollins
ISBN: 0544355504
Category : Education
Languages : en
Pages : 63
Book Description
Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology.
Internet of Things and Big Data Applications
Author: Valentina E. Balas
Publisher: Springer Nature
ISBN: 3030391191
Category : Computers
Languages : en
Pages : 283
Book Description
This book provides essential future directions for IoT and Big Data research. Thanks to rapid advances in sensors and wireless technology, Internet of Things (IoT)-related applications are attracting more and more attention. As more devices are connected, they become potential components for smart applications. Thus, there is a new global interest in these applications in various domains such as health, agriculture, energy, security and retail. The main objective of this book is to reflect the multifaceted nature of IoT and Big Data in a single source. Accordingly, each chapter addresses a specific domain that is now being significantly impacted by the spread of soft computing
Publisher: Springer Nature
ISBN: 3030391191
Category : Computers
Languages : en
Pages : 283
Book Description
This book provides essential future directions for IoT and Big Data research. Thanks to rapid advances in sensors and wireless technology, Internet of Things (IoT)-related applications are attracting more and more attention. As more devices are connected, they become potential components for smart applications. Thus, there is a new global interest in these applications in various domains such as health, agriculture, energy, security and retail. The main objective of this book is to reflect the multifaceted nature of IoT and Big Data in a single source. Accordingly, each chapter addresses a specific domain that is now being significantly impacted by the spread of soft computing
Data Science at the Command Line
Author: Jeroen Janssens
Publisher: "O'Reilly Media, Inc."
ISBN: 1491947802
Category : Computers
Languages : en
Pages : 207
Book Description
This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms
Publisher: "O'Reilly Media, Inc."
ISBN: 1491947802
Category : Computers
Languages : en
Pages : 207
Book Description
This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You’ll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started—whether you’re on Windows, OS X, or Linux—author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you’re already comfortable processing data with, say, Python or R, you’ll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms
Linguistic Corpora and Big Data in Spanish and Portuguese
Author: Miguel Calderón Campos
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110781468
Category : Language Arts & Disciplines
Languages : en
Pages : 238
Book Description
In recent decades, corpus linguistics has experienced tremendous development in the Hispanic world, along two opposite but complementary approaches: increase in corpus size (corpus linguistics as Big Data) and improvement in document selection and data annotation (corpus linguistics as High Quality Data). The first approach has led to the creation of massive corpora such as EsTenTen; at the same time, it has promoted the use of the web and social networks as corpora. The second perspective gives rise to specialized corpora such as Post Scriptum or Oralia Diacrónica del español (ODE). The contributions gathered in this volume combine both methods in order to exploit their advantages and to overcome their possible limitations. On the one hand, it addresses the creation and design of small corpora focused on data quality; on the other hand, it offers case studies that make use of both specialized corpora and massive data extracted from the web. Highlighting the complementary nature of both methods is the main idea of this book.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110781468
Category : Language Arts & Disciplines
Languages : en
Pages : 238
Book Description
In recent decades, corpus linguistics has experienced tremendous development in the Hispanic world, along two opposite but complementary approaches: increase in corpus size (corpus linguistics as Big Data) and improvement in document selection and data annotation (corpus linguistics as High Quality Data). The first approach has led to the creation of massive corpora such as EsTenTen; at the same time, it has promoted the use of the web and social networks as corpora. The second perspective gives rise to specialized corpora such as Post Scriptum or Oralia Diacrónica del español (ODE). The contributions gathered in this volume combine both methods in order to exploit their advantages and to overcome their possible limitations. On the one hand, it addresses the creation and design of small corpora focused on data quality; on the other hand, it offers case studies that make use of both specialized corpora and massive data extracted from the web. Highlighting the complementary nature of both methods is the main idea of this book.
Policing and Intelligence in the Global Big Data Era, Volume I
Author: Tereza Østbø Kuldova
Publisher: Springer Nature
ISBN: 3031683269
Category :
Languages : en
Pages : 410
Book Description
Publisher: Springer Nature
ISBN: 3031683269
Category :
Languages : en
Pages : 410
Book Description
Python Data Science Handbook
Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
¡Sonríe, te están puntuando!
Author: Roberto Aparici
Publisher: Editorial GEDISA
ISBN: 8416919747
Category : Language Arts & Disciplines
Languages : en
Pages : 237
Book Description
Publisher: Editorial GEDISA
ISBN: 8416919747
Category : Language Arts & Disciplines
Languages : en
Pages : 237
Book Description