Optimization Theory and Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimization Theory and Methods PDF full book. Access full book title Optimization Theory and Methods by Wenyu Sun. Download full books in PDF and EPUB format.

Optimization Theory and Methods

Optimization Theory and Methods PDF Author: Wenyu Sun
Publisher: Springer Science & Business Media
ISBN: 0387249761
Category : Mathematics
Languages : en
Pages : 689

Book Description
Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea’s motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.

Optimization Theory and Methods

Optimization Theory and Methods PDF Author: Wenyu Sun
Publisher: Springer Science & Business Media
ISBN: 0387249761
Category : Mathematics
Languages : en
Pages : 689

Book Description
Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea’s motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.

Optimization Methods

Optimization Methods PDF Author: Marco Cavazzuti
Publisher: Springer Science & Business Media
ISBN: 3642311865
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
This book is about optimization techniques and is subdivided into two parts. In the first part a wide overview on optimization theory is presented. Optimization is presented as being composed of five topics, namely: design of experiment, response surface modeling, deterministic optimization, stochastic optimization, and robust engineering design. Each chapter, after presenting the main techniques for each part, draws application oriented conclusions including didactic examples. In the second part some applications are presented to guide the reader through the process of setting up a few optimization exercises, analyzing critically the choices which are made step by step, and showing how the different topics that constitute the optimization theory can be used jointly in an optimization process. The applications which are presented are mainly in the field of thermodynamics and fluid dynamics due to the author's background.

Optimization Methods, Theory and Applications

Optimization Methods, Theory and Applications PDF Author: Honglei Xu
Publisher: Springer
ISBN: 3662470446
Category : Mathematics
Languages : en
Pages : 212

Book Description
This book presents the latest research findings and state-of-the-art solutions on optimization techniques and provides new research direction and developments. Both the theoretical and practical aspects of the book will be much beneficial to experts and students in optimization and operation research community. It selects high quality papers from The International Conference on Optimization: Techniques and Applications (ICOTA2013). The conference is an official conference series of POP (The Pacific Optimization Research Activity Group; there are over 500 active members). These state-of-the-art works in this book authored by recognized experts will make contributions to the development of optimization with its applications.

Nonsmooth Approach to Optimization Problems with Equilibrium Constraints

Nonsmooth Approach to Optimization Problems with Equilibrium Constraints PDF Author: Jiri Outrata
Publisher: Springer Science & Business Media
ISBN: 1475728255
Category : Mathematics
Languages : en
Pages : 281

Book Description
In the early fifties, applied mathematicians, engineers and economists started to pay c10se attention to the optimization problems in which another (lower-Ievel) optimization problem arises as a side constraint. One of the motivating factors was the concept of the Stackelberg solution in game theory, together with its economic applications. Other problems have been encountered in the seventies in natural sciences and engineering. Many of them are of practical importance and have been extensively studied, mainly from the theoretical point of view. Later, applications to mechanics and network design have lead to an extension of the problem formulation: Constraints in form of variation al inequalities and complementarity problems were also admitted. The term "generalized bi level programming problems" was used at first but later, probably in Harker and Pang, 1988, a different terminology was introduced: Mathematical programs with equilibrium constraints, or simply, MPECs. In this book we adhere to MPEC terminology. A large number of papers deals with MPECs but, to our knowledge, there is only one monograph (Luo et al. , 1997). This monograph concentrates on optimality conditions and numerical methods. Our book is oriented similarly, but we focus on those MPECs which can be treated by the implicit programming approach: the equilibrium constraint locally defines a certain implicit function and allows to convert the problem into a mathematical program with a nonsmooth objective.

Bayesian Approach to Global Optimization

Bayesian Approach to Global Optimization PDF Author: Jonas Mockus
Publisher: Springer Science & Business Media
ISBN: 9400909098
Category : Computers
Languages : en
Pages : 267

Book Description
·Et moi ... si j'avait su comment en revcnir. One service mathematics has rendered the je o'y semis point alle.' human race. It has put common sense back Jules Verne where it beloogs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense', able to do something with it. Eric T. BclI O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

Optimization Theory with Applications

Optimization Theory with Applications PDF Author: Donald A. Pierre
Publisher: Courier Corporation
ISBN: 0486136957
Category : Mathematics
Languages : en
Pages : 644

Book Description
Broad-spectrum approach to important topic. Explores the classic theory of minima and maxima, classical calculus of variations, simplex technique and linear programming, optimality and dynamic programming, more. 1969 edition.

Mathematical Theory of Optimization

Mathematical Theory of Optimization PDF Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
ISBN: 1475757956
Category : Mathematics
Languages : en
Pages : 277

Book Description
This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.

Theory and Algorithms for Linear Optimization

Theory and Algorithms for Linear Optimization PDF Author: Cornelis Roos
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 520

Book Description
The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis.

Convex Optimization Algorithms

Convex Optimization Algorithms PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529280
Category : Mathematics
Languages : en
Pages : 576

Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

First-Order Methods in Optimization

First-Order Methods in Optimization PDF Author: Amir Beck
Publisher: SIAM
ISBN: 1611974984
Category : Mathematics
Languages : en
Pages : 476

Book Description
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.