Author: Stephen S. Senn
Publisher: John Wiley & Sons
ISBN: 9780470723579
Category : Medical
Languages : en
Pages : 523
Book Description
Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.
Statistical Issues in Drug Development
Author: Stephen S. Senn
Publisher: John Wiley & Sons
ISBN: 9780470723579
Category : Medical
Languages : en
Pages : 523
Book Description
Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.
Publisher: John Wiley & Sons
ISBN: 9780470723579
Category : Medical
Languages : en
Pages : 523
Book Description
Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.
Small Clinical Trials
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221
Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221
Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Sharing Clinical Trial Data
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309316324
Category : Medical
Languages : en
Pages : 236
Book Description
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
Publisher: National Academies Press
ISBN: 0309316324
Category : Medical
Languages : en
Pages : 236
Book Description
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
Applied Statistics in Biomedicine and Clinical Trials Design
Author: Zhen Chen
Publisher: Springer
ISBN: 3319126946
Category : Medical
Languages : en
Pages : 550
Book Description
This volume is a unique combination of papers that cover critical topics in biostatistics from academic, government, and industry perspectives. The 6 sections cover Bayesian methods in biomedical research; Diagnostic medicine and classification; Innovative Clinical Trials Design; Modelling and Data Analysis; Personalized Medicine; and Statistical Genomics. The real world applications are in clinical trials, diagnostic medicine and genetics. The peer-reviewed contributions were solicited and selected from some 400 presentations at the annual meeting of the International Chinese Statistical Association (ICSA), held with the International Society for Biopharmaceutical Statistics (ISBS). The conference was held in Bethesda in June 2013, and the material has been subsequently edited and expanded to cover the most recent developments.
Publisher: Springer
ISBN: 3319126946
Category : Medical
Languages : en
Pages : 550
Book Description
This volume is a unique combination of papers that cover critical topics in biostatistics from academic, government, and industry perspectives. The 6 sections cover Bayesian methods in biomedical research; Diagnostic medicine and classification; Innovative Clinical Trials Design; Modelling and Data Analysis; Personalized Medicine; and Statistical Genomics. The real world applications are in clinical trials, diagnostic medicine and genetics. The peer-reviewed contributions were solicited and selected from some 400 presentations at the annual meeting of the International Chinese Statistical Association (ICSA), held with the International Society for Biopharmaceutical Statistics (ISBS). The conference was held in Bethesda in June 2013, and the material has been subsequently edited and expanded to cover the most recent developments.
The Prevention and Treatment of Missing Data in Clinical Trials
Author: National Research Council
Publisher: National Academies Press
ISBN: 030918651X
Category : Medical
Languages : en
Pages : 163
Book Description
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Publisher: National Academies Press
ISBN: 030918651X
Category : Medical
Languages : en
Pages : 163
Book Description
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Saving Women's Lives
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309165946
Category : Medical
Languages : en
Pages : 384
Book Description
The outlook for women with breast cancer has improved in recent years. Due to the combination of improved treatments and the benefits of mammography screening, breast cancer mortality has decreased steadily since 1989. Yet breast cancer remains a major problem, second only to lung cancer as a leading cause of death from cancer for women. To date, no means to prevent breast cancer has been discovered and experience has shown that treatments are most effective when a cancer is detected early, before it has spread to other tissues. These two facts suggest that the most effective way to continue reducing the death toll from breast cancer is improved early detection and diagnosis. Building on the 2001 report Mammography and Beyond, this new book not only examines ways to improve implementation and use of new and current breast cancer detection technologies but also evaluates the need to develop tools that identify women who would benefit most from early detection screening. Saving Women's Lives: Strategies for Improving Breast Cancer Detection and Diagnosis encourages more research that integrates the development, validation, and analysis of the types of technologies in clinical practice that promote improved risk identification techniques. In this way, methods and technologies that improve detection and diagnosis can be more effectively developed and implemented.
Publisher: National Academies Press
ISBN: 0309165946
Category : Medical
Languages : en
Pages : 384
Book Description
The outlook for women with breast cancer has improved in recent years. Due to the combination of improved treatments and the benefits of mammography screening, breast cancer mortality has decreased steadily since 1989. Yet breast cancer remains a major problem, second only to lung cancer as a leading cause of death from cancer for women. To date, no means to prevent breast cancer has been discovered and experience has shown that treatments are most effective when a cancer is detected early, before it has spread to other tissues. These two facts suggest that the most effective way to continue reducing the death toll from breast cancer is improved early detection and diagnosis. Building on the 2001 report Mammography and Beyond, this new book not only examines ways to improve implementation and use of new and current breast cancer detection technologies but also evaluates the need to develop tools that identify women who would benefit most from early detection screening. Saving Women's Lives: Strategies for Improving Breast Cancer Detection and Diagnosis encourages more research that integrates the development, validation, and analysis of the types of technologies in clinical practice that promote improved risk identification techniques. In this way, methods and technologies that improve detection and diagnosis can be more effectively developed and implemented.
Good Research Practice in Non-Clinical Pharmacology and Biomedicine
Author: Anton Bespalov
Publisher: Springer Nature
ISBN: 3030336565
Category : Cardiology
Languages : en
Pages : 424
Book Description
This open access book, published under a CC BY 4.0 license in the Pubmed indexed book series Handbook of Experimental Pharmacology, provides up-to-date information on best practice to improve experimental design and quality of research in non-clinical pharmacology and biomedicine.
Publisher: Springer Nature
ISBN: 3030336565
Category : Cardiology
Languages : en
Pages : 424
Book Description
This open access book, published under a CC BY 4.0 license in the Pubmed indexed book series Handbook of Experimental Pharmacology, provides up-to-date information on best practice to improve experimental design and quality of research in non-clinical pharmacology and biomedicine.
Cross-over Trials in Clinical Research
Author: Stephen S. Senn
Publisher: John Wiley & Sons
ISBN: 0470854588
Category : Mathematics
Languages : en
Pages : 364
Book Description
Cross-over trials are an important class of design used in the pharmaceutical industry and medical research, and their use continues to grow. Cross-over Trials in Clinical Research, Second Edition has been fully updated to include the latest methodology used in the design and analysis of cross-over trials. It includes more background material, greater coverage of important statistical techniques, including Bayesian methods, and discussion of analysis using a number of statistical software packages. * Comprehensive coverage of the design and analysis of cross-over trials. * Each technique is carefully explained and the mathematics is kept to a minimum. * Features many real and original examples, taken from the author's vast experience. * Includes discussion of analysis using SAS, S-Plus and, GenStat, StatXact and Excel. * Written in a style suitable for statisticians and physicians alike. * Computer programs to accompany the examples in the book can be downloaded from the Web Primarily aimed at statisticians and researchers working in the pharmaceutical industry, the book will also appeal to physicians involved in clinical research and students of medical statistics.
Publisher: John Wiley & Sons
ISBN: 0470854588
Category : Mathematics
Languages : en
Pages : 364
Book Description
Cross-over trials are an important class of design used in the pharmaceutical industry and medical research, and their use continues to grow. Cross-over Trials in Clinical Research, Second Edition has been fully updated to include the latest methodology used in the design and analysis of cross-over trials. It includes more background material, greater coverage of important statistical techniques, including Bayesian methods, and discussion of analysis using a number of statistical software packages. * Comprehensive coverage of the design and analysis of cross-over trials. * Each technique is carefully explained and the mathematics is kept to a minimum. * Features many real and original examples, taken from the author's vast experience. * Includes discussion of analysis using SAS, S-Plus and, GenStat, StatXact and Excel. * Written in a style suitable for statisticians and physicians alike. * Computer programs to accompany the examples in the book can be downloaded from the Web Primarily aimed at statisticians and researchers working in the pharmaceutical industry, the book will also appeal to physicians involved in clinical research and students of medical statistics.
Transforming Clinical Research in the United States
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309163358
Category : Medical
Languages : en
Pages : 151
Book Description
An ideal health care system relies on efficiently generating timely, accurate evidence to deliver on its promise of diminishing the divide between clinical practice and research. There are growing indications, however, that the current health care system and the clinical research that guides medical decisions in the United States falls far short of this vision. The process of generating medical evidence through clinical trials in the United States is expensive and lengthy, includes a number of regulatory hurdles, and is based on a limited infrastructure. The link between clinical research and medical progress is also frequently misunderstood or unsupported by both patients and providers. The focus of clinical research changes as diseases emerge and new treatments create cures for old conditions. As diseases evolve, the ultimate goal remains to speed new and improved medical treatments to patients throughout the world. To keep pace with rapidly changing health care demands, clinical research resources need to be organized and on hand to address the numerous health care questions that continually emerge. Improving the overall capacity of the clinical research enterprise will depend on ensuring that there is an adequate infrastructure in place to support the investigators who conduct research, the patients with real diseases who volunteer to participate in experimental research, and the institutions that organize and carry out the trials. To address these issues and better understand the current state of clinical research in the United States, the Institute of Medicine's (IOM) Forum on Drug Discovery, Development, and Translation held a 2-day workshop entitled Transforming Clinical Research in the United States. The workshop, summarized in this volume, laid the foundation for a broader initiative of the Forum addressing different aspects of clinical research. Future Forum plans include further examining regulatory, administrative, and structural barriers to the effective conduct of clinical research; developing a vision for a stable, continuously funded clinical research infrastructure in the United States; and considering strategies and collaborative activities to facilitate more robust public engagement in the clinical research enterprise.
Publisher: National Academies Press
ISBN: 0309163358
Category : Medical
Languages : en
Pages : 151
Book Description
An ideal health care system relies on efficiently generating timely, accurate evidence to deliver on its promise of diminishing the divide between clinical practice and research. There are growing indications, however, that the current health care system and the clinical research that guides medical decisions in the United States falls far short of this vision. The process of generating medical evidence through clinical trials in the United States is expensive and lengthy, includes a number of regulatory hurdles, and is based on a limited infrastructure. The link between clinical research and medical progress is also frequently misunderstood or unsupported by both patients and providers. The focus of clinical research changes as diseases emerge and new treatments create cures for old conditions. As diseases evolve, the ultimate goal remains to speed new and improved medical treatments to patients throughout the world. To keep pace with rapidly changing health care demands, clinical research resources need to be organized and on hand to address the numerous health care questions that continually emerge. Improving the overall capacity of the clinical research enterprise will depend on ensuring that there is an adequate infrastructure in place to support the investigators who conduct research, the patients with real diseases who volunteer to participate in experimental research, and the institutions that organize and carry out the trials. To address these issues and better understand the current state of clinical research in the United States, the Institute of Medicine's (IOM) Forum on Drug Discovery, Development, and Translation held a 2-day workshop entitled Transforming Clinical Research in the United States. The workshop, summarized in this volume, laid the foundation for a broader initiative of the Forum addressing different aspects of clinical research. Future Forum plans include further examining regulatory, administrative, and structural barriers to the effective conduct of clinical research; developing a vision for a stable, continuously funded clinical research infrastructure in the United States; and considering strategies and collaborative activities to facilitate more robust public engagement in the clinical research enterprise.
Applied Statistics in the Pharmaceutical Industry
Author: Steven P. Millard
Publisher: Springer Science & Business Media
ISBN: 1475734662
Category : Medical
Languages : en
Pages : 518
Book Description
Providing a general guide to statistical methods used in the pharmaceutical industry, and illustrating how to use S-PLUS to implement these methods, the book explains why S-PLUS is a useful software package and discusses the results and implications of each particular application. It is targeted at graduates in biostatistics, statisticians involved in the industry as research scientists, regulators, academics, and/or consultants who want to know more about how to use S-PLUS and learn about other sub-fields within the industry, as well as statisticians in other fields who want to know more about statistical applications in the pharmaceutical industry.
Publisher: Springer Science & Business Media
ISBN: 1475734662
Category : Medical
Languages : en
Pages : 518
Book Description
Providing a general guide to statistical methods used in the pharmaceutical industry, and illustrating how to use S-PLUS to implement these methods, the book explains why S-PLUS is a useful software package and discusses the results and implications of each particular application. It is targeted at graduates in biostatistics, statisticians involved in the industry as research scientists, regulators, academics, and/or consultants who want to know more about how to use S-PLUS and learn about other sub-fields within the industry, as well as statisticians in other fields who want to know more about statistical applications in the pharmaceutical industry.