Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Applied Mechanics of Solids
Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820
Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Applied Solid Mechanics
Author: Peter Howell
Publisher: Cambridge University Press
ISBN: 052185489X
Category : Mathematics
Languages : en
Pages : 467
Book Description
Emphasises the power of mathematics to provide quantitative insights across the whole area of solid mechanics; accessible and comprehensive.
Publisher: Cambridge University Press
ISBN: 052185489X
Category : Mathematics
Languages : en
Pages : 467
Book Description
Emphasises the power of mathematics to provide quantitative insights across the whole area of solid mechanics; accessible and comprehensive.
Mechanics of Solids and Structures, Second Edition
Author: Roger T. Fenner
Publisher: CRC Press
ISBN: 1439858144
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.
Publisher: CRC Press
ISBN: 1439858144
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.
Solid Mechanics
Author: J.P. Ward
Publisher: Springer Science & Business Media
ISBN: 940158026X
Category : Science
Languages : en
Pages : 292
Book Description
This book is intended as an introductory text on Solid Mechanics suitable for engineers, scientists and applied mathematicians. Solid mechanics is treated as a subset of mathematical engineering and courses on this topic which include theoretical, numerical and experimental aspects (as this text does) can be amongst the most interesting and accessible that an undergraduate science student can take. I have concentrated entirely on linear elasticity being, to the beginner, the most amenable and accessible aspect of solid mechanics. It is a subject with a long history, though its development in relatively recent times can be traced back to Hooke (circa 1670). Partly because of its long history solid mechanics has an 'old fashioned' feel to it which is reflected in numerous texts written on the subject. This is particularly so in the classic text by Love (A Treatise on the Mathematical Theory of Elasticity 4th ed., Cambridge, Univ. Press, 1927). Although there is a wealth of information in that text it is not in a form which is easily accessible to the average lecturer let alone the average engineering student. This classic style avoiding the use of vectors or tensors has been mirrored in many other more 'modern' texts.
Publisher: Springer Science & Business Media
ISBN: 940158026X
Category : Science
Languages : en
Pages : 292
Book Description
This book is intended as an introductory text on Solid Mechanics suitable for engineers, scientists and applied mathematicians. Solid mechanics is treated as a subset of mathematical engineering and courses on this topic which include theoretical, numerical and experimental aspects (as this text does) can be amongst the most interesting and accessible that an undergraduate science student can take. I have concentrated entirely on linear elasticity being, to the beginner, the most amenable and accessible aspect of solid mechanics. It is a subject with a long history, though its development in relatively recent times can be traced back to Hooke (circa 1670). Partly because of its long history solid mechanics has an 'old fashioned' feel to it which is reflected in numerous texts written on the subject. This is particularly so in the classic text by Love (A Treatise on the Mathematical Theory of Elasticity 4th ed., Cambridge, Univ. Press, 1927). Although there is a wealth of information in that text it is not in a form which is easily accessible to the average lecturer let alone the average engineering student. This classic style avoiding the use of vectors or tensors has been mirrored in many other more 'modern' texts.
Continuum Mechanics and Linear Elasticity
Author: Ciprian D. Coman
Publisher: Springer Nature
ISBN: 9402417710
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).
Publisher: Springer Nature
ISBN: 9402417710
Category : Technology & Engineering
Languages : en
Pages : 528
Book Description
This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).
Variational Methods in the Mechanics of Solids
Author: S. Nemat-Nasser
Publisher: Elsevier
ISBN: 1483145832
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
Variational Methods in the Mechanics of Solids contains the proceedings of the International Union of Theoretical and Applied Mechanics Symposium on Variational Methods in the Mechanics of Solids, held at Northwestern University in Evanston, Illinois, on September 11-13, 1978. The papers focus on advances in the application of variational methods to a variety of mathematically and technically significant problems in solid mechanics. The discussions are organized around three themes: thermomechanical behavior of composites, elastic and inelastic boundary value problems, and elastic and inelastic dynamic problems. This book is comprised of 58 chapters and opens by addressing some questions of asymptotic expansions connected with composite and with perforated materials. The following chapters explore mathematical and computational methods in plasticity; variational irreversible thermodynamics of open physical-chemical continua; macroscopic behavior of elastic material with periodically spaced rigid inclusions; and application of the Lanczos method to structural vibration. Finite deformation of elastic beams and complementary theorems of solid mechanics are also considered, along with numerical contact elastostatics; periodic solutions in plasticity and viscoplasticity; and the convergence of the mixed finite element method in linear elasticity. This monograph will appeal to practitioners of mathematicians as well as theoretical and applied mechanics.
Publisher: Elsevier
ISBN: 1483145832
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
Variational Methods in the Mechanics of Solids contains the proceedings of the International Union of Theoretical and Applied Mechanics Symposium on Variational Methods in the Mechanics of Solids, held at Northwestern University in Evanston, Illinois, on September 11-13, 1978. The papers focus on advances in the application of variational methods to a variety of mathematically and technically significant problems in solid mechanics. The discussions are organized around three themes: thermomechanical behavior of composites, elastic and inelastic boundary value problems, and elastic and inelastic dynamic problems. This book is comprised of 58 chapters and opens by addressing some questions of asymptotic expansions connected with composite and with perforated materials. The following chapters explore mathematical and computational methods in plasticity; variational irreversible thermodynamics of open physical-chemical continua; macroscopic behavior of elastic material with periodically spaced rigid inclusions; and application of the Lanczos method to structural vibration. Finite deformation of elastic beams and complementary theorems of solid mechanics are also considered, along with numerical contact elastostatics; periodic solutions in plasticity and viscoplasticity; and the convergence of the mixed finite element method in linear elasticity. This monograph will appeal to practitioners of mathematicians as well as theoretical and applied mechanics.
Applied Mechanics of Polymers
Author: George Youssef
Publisher: Elsevier
ISBN: 0128210796
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers. This is a useful reference text that will benefit graduate students, postdocs, researchers, and engineers in the mechanics of materials, polymer science, mechanical engineering and material science. Additional resources related to the book can be found at polymersmechanics.com. - Provides examples of real-world applications that demonstrate the use of models in designing polymer-based components - Includes access to a companion site from where readers can download FEA and MATLAB code, FEA simulation files, videos and other supplemental material - Features end-of-chapter summaries with design and analysis guidelines, practice problem sets based on real-life situations, and both analytical and computational examples to bridge academic and industrial applications
Publisher: Elsevier
ISBN: 0128210796
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers. This is a useful reference text that will benefit graduate students, postdocs, researchers, and engineers in the mechanics of materials, polymer science, mechanical engineering and material science. Additional resources related to the book can be found at polymersmechanics.com. - Provides examples of real-world applications that demonstrate the use of models in designing polymer-based components - Includes access to a companion site from where readers can download FEA and MATLAB code, FEA simulation files, videos and other supplemental material - Features end-of-chapter summaries with design and analysis guidelines, practice problem sets based on real-life situations, and both analytical and computational examples to bridge academic and industrial applications
Mechanics of Deformable Solids
Author: Issam Doghri
Publisher: Springer Science & Business Media
ISBN: 9783540669609
Category : Science
Languages : en
Pages : 606
Book Description
Three subjects of major interest in one textbook: linear elasticity, mechanics of structures in linear isotropic elasticity, and nonlinear mechanics including computational algorithms. After the simplest possible, intuitive approach there follows the mathematical formulation and analysis, with computational methods occupying a good portion of the book. There are several worked-out problems in each chapter and additional exercises at the end of the book, plus mathematical expressions are bery often given in more than one notation. The book is intended primarily for students and practising engineers in mechanical and civil engineering, although students and experts from applied mathematics, materials science and other related fields will also find it useful.
Publisher: Springer Science & Business Media
ISBN: 9783540669609
Category : Science
Languages : en
Pages : 606
Book Description
Three subjects of major interest in one textbook: linear elasticity, mechanics of structures in linear isotropic elasticity, and nonlinear mechanics including computational algorithms. After the simplest possible, intuitive approach there follows the mathematical formulation and analysis, with computational methods occupying a good portion of the book. There are several worked-out problems in each chapter and additional exercises at the end of the book, plus mathematical expressions are bery often given in more than one notation. The book is intended primarily for students and practising engineers in mechanical and civil engineering, although students and experts from applied mathematics, materials science and other related fields will also find it useful.
Solid Mechanics
Author: Clive L. Dym
Publisher: Springer Science & Business Media
ISBN: 1461460344
Category : Science
Languages : en
Pages : 698
Book Description
Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as developed from the three-dimensional theory of elasticity; and second, to introduce the student to the strength and utility of variational principles and methods, including briefly making the connection to finite element methods. A complete set of homework problems is included.
Publisher: Springer Science & Business Media
ISBN: 1461460344
Category : Science
Languages : en
Pages : 698
Book Description
Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as developed from the three-dimensional theory of elasticity; and second, to introduce the student to the strength and utility of variational principles and methods, including briefly making the connection to finite element methods. A complete set of homework problems is included.
Intermediate Solid Mechanics
Author: Marko V. Lubarda
Publisher: Cambridge University Press
ISBN: 1108603424
Category : Science
Languages : en
Pages : 501
Book Description
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.
Publisher: Cambridge University Press
ISBN: 1108603424
Category : Science
Languages : en
Pages : 501
Book Description
Based on class-tested material, this concise yet comprehensive treatment of the fundamentals of solid mechanics is ideal for those taking single-semester courses on the subject. It provides interdisciplinary coverage of the key topics, combining solid mechanics with structural design applications, mechanical behavior of materials, and the finite element method. Part I covers basic theory, including the analysis of stress and strain, Hooke's law, and the formulation of boundary-value problems in Cartesian and cylindrical coordinates. Part II covers applications, from solving boundary-value problems, to energy methods and failure criteria, two-dimensional plane stress and strain problems, antiplane shear, contact problems, and much more. With a wealth of solved examples, assigned exercises, and 130 homework problems, and a solutions manual available online, this is ideal for senior undergraduates studying solid mechanics, and graduates taking introductory courses in solid mechanics and theory of elasticity, across aerospace, civil and mechanical engineering, and materials science.