Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models PDF full book. Access full book title Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models by Jorge Garza Ulloa. Download full books in PDF and EPUB format.

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models PDF Author: Jorge Garza Ulloa
Publisher: Elsevier
ISBN: 0128209348
Category : Science
Languages : en
Pages : 705

Book Description
Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models focuses on the relationship between three different multidisciplinary branches of engineering: Biomedical Engineering, Cognitive Science and Computer Science through Artificial Intelligence models. These models will be used to study how the nervous system and musculoskeletal system obey movement orders from the brain, as well as the mental processes of the information during cognition when injuries and neurologic diseases are present in the human body. The interaction between these three areas are studied in this book with the objective of obtaining AI models on injuries and neurologic diseases of the human body, studying diseases of the brain, spine and the nerves that connect them with the musculoskeletal system. There are more than 600 diseases of the nervous system, including brain tumors, epilepsy, Parkinson's disease, stroke, and many others. These diseases affect the human cognitive system that sends orders from the central nervous system (CNS) through the peripheral nervous systems (PNS) to do tasks using the musculoskeletal system. These actions can be detected by many Bioinstruments (Biomedical Instruments) and cognitive device data, allowing us to apply AI using Machine Learning-Deep Learning-Cognitive Computing models through algorithms to analyze, detect, classify, and forecast the process of various illnesses, diseases, and injuries of the human body. Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models provides readers with the study of injuries, illness, and neurological diseases of the human body through Artificial Intelligence using Machine Learning (ML), Deep Learning (DL) and Cognitive Computing (CC) models based on algorithms developed with MATLAB® and IBM Watson®. - Provides an introduction to Cognitive science, cognitive computing and human cognitive relation to help in the solution of AI Biomedical engineering problems - Explain different Artificial Intelligence (AI) including evolutionary algorithms to emulate natural evolution, reinforced learning, Artificial Neural Network (ANN) type and cognitive learning and to obtain many AI models for Biomedical Engineering problems - Includes coverage of the evolution Artificial Intelligence through Machine Learning (ML), Deep Learning (DL), Cognitive Computing (CC) using MATLAB® as a programming language with many add-on MATLAB® toolboxes, and AI based commercial products cloud services as: IBM (Cognitive Computing, IBM Watson®, IBM Watson Studio®, IBM Watson Studio Visual Recognition®), and others - Provides the necessary tools to accelerate obtaining results for the analysis of injuries, illness, and neurologic diseases that can be detected through the static, kinetics and kinematics, and natural body language data and medical imaging techniques applying AI using ML-DL-CC algorithms with the objective of obtaining appropriate conclusions to create solutions that improve the quality of life of patients

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models PDF Author: Jorge Garza Ulloa
Publisher: Elsevier
ISBN: 0128209348
Category : Science
Languages : en
Pages : 705

Book Description
Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models focuses on the relationship between three different multidisciplinary branches of engineering: Biomedical Engineering, Cognitive Science and Computer Science through Artificial Intelligence models. These models will be used to study how the nervous system and musculoskeletal system obey movement orders from the brain, as well as the mental processes of the information during cognition when injuries and neurologic diseases are present in the human body. The interaction between these three areas are studied in this book with the objective of obtaining AI models on injuries and neurologic diseases of the human body, studying diseases of the brain, spine and the nerves that connect them with the musculoskeletal system. There are more than 600 diseases of the nervous system, including brain tumors, epilepsy, Parkinson's disease, stroke, and many others. These diseases affect the human cognitive system that sends orders from the central nervous system (CNS) through the peripheral nervous systems (PNS) to do tasks using the musculoskeletal system. These actions can be detected by many Bioinstruments (Biomedical Instruments) and cognitive device data, allowing us to apply AI using Machine Learning-Deep Learning-Cognitive Computing models through algorithms to analyze, detect, classify, and forecast the process of various illnesses, diseases, and injuries of the human body. Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models provides readers with the study of injuries, illness, and neurological diseases of the human body through Artificial Intelligence using Machine Learning (ML), Deep Learning (DL) and Cognitive Computing (CC) models based on algorithms developed with MATLAB® and IBM Watson®. - Provides an introduction to Cognitive science, cognitive computing and human cognitive relation to help in the solution of AI Biomedical engineering problems - Explain different Artificial Intelligence (AI) including evolutionary algorithms to emulate natural evolution, reinforced learning, Artificial Neural Network (ANN) type and cognitive learning and to obtain many AI models for Biomedical Engineering problems - Includes coverage of the evolution Artificial Intelligence through Machine Learning (ML), Deep Learning (DL), Cognitive Computing (CC) using MATLAB® as a programming language with many add-on MATLAB® toolboxes, and AI based commercial products cloud services as: IBM (Cognitive Computing, IBM Watson®, IBM Watson Studio®, IBM Watson Studio Visual Recognition®), and others - Provides the necessary tools to accelerate obtaining results for the analysis of injuries, illness, and neurologic diseases that can be detected through the static, kinetics and kinematics, and natural body language data and medical imaging techniques applying AI using ML-DL-CC algorithms with the objective of obtaining appropriate conclusions to create solutions that improve the quality of life of patients

Machine Learning-Based Modelling in Atomic Layer Deposition Processes

Machine Learning-Based Modelling in Atomic Layer Deposition Processes PDF Author: Oluwatobi Adeleke
Publisher: CRC Press
ISBN: 1003803113
Category : Technology & Engineering
Languages : en
Pages : 377

Book Description
While thin film technology has benefited greatly from artificial intelligence (AI) and machine learning (ML) techniques, there is still much to be learned from a full-scale exploration of these technologies in atomic layer deposition (ALD). This book provides in-depth information regarding the application of ML-based modeling techniques in thin film technology as a standalone approach and integrated with the classical simulation and modeling methods. It is the first of its kind to present detailed information regarding approaches in ML-based modeling, optimization, and prediction of the behaviors and characteristics of ALD for improved process quality control and discovery of new materials. As such, this book fills significant knowledge gaps in the existing resources as it provides extensive information on ML and its applications in film thin technology. Offers an in-depth overview of the fundamentals of thin film technology, state-of-the-art computational simulation approaches in ALD, ML techniques, algorithms, applications, and challenges. Establishes the need for and significance of ML applications in ALD while introducing integration approaches for ML techniques with computation simulation approaches. Explores the application of key techniques in ML, such as predictive analysis, classification techniques, feature engineering, image processing capability, and microstructural analysis of deep learning algorithms and generative model benefits in ALD. Helps readers gain a holistic understanding of the exciting applications of ML-based solutions to ALD problems and apply them to real-world issues. Aimed at materials scientists and engineers, this book fills significant knowledge gaps in existing resources as it provides extensive information on ML and its applications in film thin technology. It also opens space for future intensive research and intriguing opportunities for ML-enhanced ALD processes, which scale from academic to industrial applications.

Innovative Methods in Computer Science and Computational Applications in the Era of Industry 5.0

Innovative Methods in Computer Science and Computational Applications in the Era of Industry 5.0 PDF Author: D. Jude Hemanth
Publisher: Springer Nature
ISBN: 3031563107
Category :
Languages : en
Pages : 291

Book Description


Anxiety and Anguish - Psychological Explorations and Anthropological Figures

Anxiety and Anguish - Psychological Explorations and Anthropological Figures PDF Author: Fabio Gabrielli
Publisher: BoD – Books on Demand
ISBN: 1837693749
Category : Medical
Languages : en
Pages : 132

Book Description
Today, much research is being conducted on the psychological, psychiatric, medical, anthropological, and sociological effects of anxiety and anguish on people’s mental and physical health. This book provides a comprehensive overview of this topic by exploring research, theories, biopsychosocial perspectives, and intercultural studies about anxiety and anguish.

AI-generated Content

AI-generated Content PDF Author: Feng Zhao
Publisher: Springer Nature
ISBN: 9819975875
Category : Computers
Languages : en
Pages : 377

Book Description
This book constitutes the revised selected papers of the First International Conference, AIGC 2023, held in Shanghai, China, during August 25–26, 2023 The 30 full papers included in this volume were carefully reviewed and selected from 62 submissions. The volume focuses on the remarkable strides that have been made in the realm of artificial intelligence and its transformative impact on content creation. As delving into the content of the proceedings, the readers will encounter cutting-edge research findings, innovative applications, and thought-provoking insights that underscore the transformative potential of AI-generated content.

Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems

Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems PDF Author: Yinpeng Wang
Publisher: CRC Press
ISBN: 100089665X
Category : Computers
Languages : en
Pages : 200

Book Description
This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems. Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced. As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.

Internet of Things in Biomedical Engineering

Internet of Things in Biomedical Engineering PDF Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128173572
Category : Science
Languages : en
Pages : 382

Book Description
Internet of Things in Biomedical Engineering presents the most current research in Internet of Things (IoT) applications for clinical patient monitoring and treatment. The book takes a systems-level approach for both human-factors and the technical aspects of networking, databases and privacy. Sections delve into the latest advances and cutting-edge technologies, starting with an overview of the Internet of Things and biomedical engineering, as well as a focus on 'daily life.' Contributors from various experts then discuss 'computer assisted anthropology,' CLOUDFALL, and image guided surgery, as well as bio-informatics and data mining. This comprehensive coverage of the industry and technology is a perfect resource for students and researchers interested in the topic. - Presents recent advances in IoT for biomedical engineering, covering biometrics, bioinformatics, artificial intelligence, computer vision and various network applications - Discusses big data and data mining in healthcare and other IoT based biomedical data analysis - Includes discussions on a variety of IoT applications and medical information systems - Includes case studies and applications, as well as examples on how to automate data analysis with Perl R in IoT

Artificial Intelligence for Cognitive Modeling

Artificial Intelligence for Cognitive Modeling PDF Author: Pijush Dutta
Publisher: CRC Press
ISBN: 1000864197
Category : Computers
Languages : en
Pages : 295

Book Description
This book is written in a clear and thorough way to cover both the traditional and modern uses of artificial intelligence and soft computing. It gives an in-depth look at mathematical models, algorithms, and real-world problems that are hard to solve in MATLAB. The book is intended to provide a broad and in-depth understanding of fuzzy logic controllers, genetic algorithms, neural networks, and hybrid techniques such as ANFIS and the GA-ANN model. Features: A detailed description of basic intelligent techniques (fuzzy logic, genetic algorithm and neural network using MATLAB) A detailed description of the hybrid intelligent technique called the adaptive fuzzy inference technique (ANFIS) Formulation of the nonlinear model like analysis of ANOVA and response surface methodology Variety of solved problems on ANOVA and RSM Case studies of above mentioned intelligent techniques on the different process control systems This book can be used as a handbook and a guide for students of all engineering disciplines, operational research areas, computer applications, and for various professionals who work in the optimization area.

Biomedical Engineering Handbook 2

Biomedical Engineering Handbook 2 PDF Author: Joseph D. Bronzino
Publisher: Springer Science & Business Media
ISBN: 9783540668084
Category : Technology & Engineering
Languages : en
Pages : 1528

Book Description


Robotic Vision: Technologies for Machine Learning and Vision Applications

Robotic Vision: Technologies for Machine Learning and Vision Applications PDF Author: Garcia-Rodriguez, Jose
Publisher: IGI Global
ISBN: 1466627034
Category : Technology & Engineering
Languages : en
Pages : 535

Book Description
Robotic systems consist of object or scene recognition, vision-based motion control, vision-based mapping, and dense range sensing, and are used for identification and navigation. As these computer vision and robotic connections continue to develop, the benefits of vision technology including savings, improved quality, reliability, safety, and productivity are revealed. Robotic Vision: Technologies for Machine Learning and Vision Applications is a comprehensive collection which highlights a solid framework for understanding existing work and planning future research. This book includes current research on the fields of robotics, machine vision, image processing and pattern recognition that is important to applying machine vision methods in the real world.