Applied Bayesian Statistical Studies in Biology and Medicine PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Applied Bayesian Statistical Studies in Biology and Medicine PDF full book. Access full book title Applied Bayesian Statistical Studies in Biology and Medicine by M. di Bacco. Download full books in PDF and EPUB format.

Applied Bayesian Statistical Studies in Biology and Medicine

Applied Bayesian Statistical Studies in Biology and Medicine PDF Author: M. di Bacco
Publisher: Springer Science & Business Media
ISBN: 146130217X
Category : Medical
Languages : en
Pages : 269

Book Description
This volume presents the results of biological and medical research with the statistical methods used to obtain them. Nowadays the fields of biology and experimental medicine rely on techniques for processing of experimental data and for the evaluation of hypotheses. It is increasingly necessary to stimulate awareness of the importance of statistical techniques (and of the possible traps that they can hide) by using real data in concrete situations drawn from research activity.

Applied Bayesian Statistical Studies in Biology and Medicine

Applied Bayesian Statistical Studies in Biology and Medicine PDF Author: M. di Bacco
Publisher: Springer Science & Business Media
ISBN: 146130217X
Category : Medical
Languages : en
Pages : 269

Book Description
This volume presents the results of biological and medical research with the statistical methods used to obtain them. Nowadays the fields of biology and experimental medicine rely on techniques for processing of experimental data and for the evaluation of hypotheses. It is increasingly necessary to stimulate awareness of the importance of statistical techniques (and of the possible traps that they can hide) by using real data in concrete situations drawn from research activity.

Likelihood and Bayesian Inference

Likelihood and Bayesian Inference PDF Author: Leonhard Held
Publisher: Springer Nature
ISBN: 3662607921
Category : Medical
Languages : en
Pages : 409

Book Description
This richly illustrated textbook covers modern statistical methods with applications in medicine, epidemiology and biology. Firstly, it discusses the importance of statistical models in applied quantitative research and the central role of the likelihood function, describing likelihood-based inference from a frequentist viewpoint, and exploring the properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic. In the second part of the book, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. It includes a separate chapter on modern numerical techniques for Bayesian inference, and also addresses advanced topics, such as model choice and prediction from frequentist and Bayesian perspectives. This revised edition of the book “Applied Statistical Inference” has been expanded to include new material on Markov models for time series analysis. It also features a comprehensive appendix covering the prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis, and each chapter is complemented by exercises. The text is primarily intended for graduate statistics and biostatistics students with an interest in applications.

Bayesian Biostatistics and Diagnostic Medicine

Bayesian Biostatistics and Diagnostic Medicine PDF Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 1584887680
Category : Mathematics
Languages : en
Pages : 214

Book Description
There are numerous advantages to using Bayesian methods in diagnostic medicine, which is why they are employed more and more today in clinical studies. Exploring Bayesian statistics at an introductory level, Bayesian Biostatistics and Diagnostic Medicine illustrates how to apply these methods to solve important problems in medicine and biology.

Applied Statistical Inference

Applied Statistical Inference PDF Author: Leonhard Held
Publisher: Springer Science & Business Media
ISBN: 3642378870
Category : Mathematics
Languages : en
Pages : 381

Book Description
This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.

Applying Quantitative Bias Analysis to Epidemiologic Data

Applying Quantitative Bias Analysis to Epidemiologic Data PDF Author: Timothy L. Lash
Publisher: Springer Science & Business Media
ISBN: 0387879595
Category : Medical
Languages : en
Pages : 200

Book Description
Bias analysis quantifies the influence of systematic error on an epidemiology study’s estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside from listing them as limitations of their particular study. This listing is often accompanied by explanations for why the limitations should not pose much concern. On the supply side, methods for bias analysis receive little attention in most epidemiology curriculums, are often scattered throughout textbooks or absent from them altogether, and cannot be implemented easily using standard statistical computing software. Our objective in this text is to reduce these supply-side barriers, with the hope that demand for quantitative bias analysis will follow.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian Statistics for Beginners

Bayesian Statistics for Beginners PDF Author: Therese M. Donovan
Publisher: Oxford University Press, USA
ISBN: 0198841299
Category : Mathematics
Languages : en
Pages : 430

Book Description
This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.

Estimating Presence and Abundance of Closed Populations

Estimating Presence and Abundance of Closed Populations PDF Author: George A. F. Seber
Publisher: Springer Nature
ISBN: 3031398343
Category : Science
Languages : en
Pages : 734

Book Description
This comprehensive book covers a wide variety of methods for estimating the sizes and related parameters of closed populations. With the effect of climate change, and human territory invasion, we have seen huge species losses and a major biodiversity decline. Populations include plants, trees, various land and sea animals, and some human populations. With such a diversity of populations, an extensive variety of different methods are described with the collection of different types of data. For example, we have count data from plot sampling, which can also allow for incomplete detection. There is a large chapter on occupancy methods where a major interest is determining whether a particular species is present or not. Citizen and opportunistic survey data can also be incorporated. A related topic is species methods, where species richness and species' interactions are of interest. A variety of distance methods are discussed. One can use distances from points and lines, as well as nearest neighbor distances. The applications are extensive, and include marine, acoustic, and aerial surveys, using multiple observers or detection devices. Line intercept measurements have a role to play such as, for example, estimating parameters relating to plant coverage. An increasingly important class of removal methods considers successive “removals" from a population, with physical removal or "removal" by capture-recapture of marked individuals. With the change-in-ratio method, removals are taken from two or more classes, e.g., males and females. Effort data used for removals can also be used. A very important method for estimating abundance is the use of capture-recapture data collected discretely or continuously and can be analysed using both frequency and Bayesian methods. Computational aspects of fitting Bayesian models are described. A related topic of growing interest is the use of spatial and camera methods. With the plethora of models there has been a corresponding development of various computational methods and packages, which are often mentioned throughout. Covariate data is being used more frequently, which can reduce the number of unknown parameters by using logistic and loglinear models. An important computational aspect is that of model selection methods. The book provides a useful list of over 1400 references.

Bayesian Analysis for Population Ecology

Bayesian Analysis for Population Ecology PDF Author: Ruth King
Publisher: CRC Press
ISBN: 1439811881
Category : Mathematics
Languages : en
Pages : 457

Book Description
Emphasizing model choice and model averaging, this book presents up-to-date Bayesian methods for analyzing complex ecological data. It provides a basic introduction to Bayesian methods that assumes no prior knowledge. The book includes detailed descriptions of methods that deal with covariate data and covers techniques at the forefront of research, such as model discrimination and model averaging. Leaders in the statistical ecology field, the authors apply the theory to a wide range of actual case studies and illustrate the methods using WinBUGS and R. The computer programs and full details of the data sets are available on the book's website.

Bayesian Statistics, A Review

Bayesian Statistics, A Review PDF Author: D. V. Lindley
Publisher: SIAM
ISBN: 9781611970654
Category : Mathematics
Languages : en
Pages : 88

Book Description
A study of those statistical ideas that use a probability distribution over parameter space. The first part describes the axiomatic basis in the concept of coherence and the implications of this for sampling theory statistics. The second part discusses the use of Bayesian ideas in many branches of statistics.