Author: Oskar Ålund
Publisher: Linköping University Electronic Press
ISBN: 9179297536
Category : Electronic books
Languages : en
Pages : 32
Book Description
Numerical solvers of initial boundary value problems will exhibit instabilities and loss of accuracy unless carefully designed. The key property that leads to convergence is stability, which this thesis primarily deals with. By employing discrete differential operators satisfying a so called summation-by-parts property, it is possible to prove stability in a systematic manner by mimicking the continuous analysis if the energy has a bound. The articles included in the thesis all aim to solve the problem of ensuring stability of a numerical scheme in some context. This includes a domain decomposition procedure, a non-conforming grid coupling procedure, an application in high energy physics, and two methods at the intersection of machine learning and summation-by-parts theory.
Applications of summation-by-parts operators
Author: Oskar Ålund
Publisher: Linköping University Electronic Press
ISBN: 9179297536
Category : Electronic books
Languages : en
Pages : 32
Book Description
Numerical solvers of initial boundary value problems will exhibit instabilities and loss of accuracy unless carefully designed. The key property that leads to convergence is stability, which this thesis primarily deals with. By employing discrete differential operators satisfying a so called summation-by-parts property, it is possible to prove stability in a systematic manner by mimicking the continuous analysis if the energy has a bound. The articles included in the thesis all aim to solve the problem of ensuring stability of a numerical scheme in some context. This includes a domain decomposition procedure, a non-conforming grid coupling procedure, an application in high energy physics, and two methods at the intersection of machine learning and summation-by-parts theory.
Publisher: Linköping University Electronic Press
ISBN: 9179297536
Category : Electronic books
Languages : en
Pages : 32
Book Description
Numerical solvers of initial boundary value problems will exhibit instabilities and loss of accuracy unless carefully designed. The key property that leads to convergence is stability, which this thesis primarily deals with. By employing discrete differential operators satisfying a so called summation-by-parts property, it is possible to prove stability in a systematic manner by mimicking the continuous analysis if the energy has a bound. The articles included in the thesis all aim to solve the problem of ensuring stability of a numerical scheme in some context. This includes a domain decomposition procedure, a non-conforming grid coupling procedure, an application in high energy physics, and two methods at the intersection of machine learning and summation-by-parts theory.
Theory, Numerics and Applications of Hyperbolic Problems II
Author: Christian Klingenberg
Publisher: Springer
ISBN: 3319915487
Category : Mathematics
Languages : en
Pages : 698
Book Description
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Publisher: Springer
ISBN: 3319915487
Category : Mathematics
Languages : en
Pages : 698
Book Description
The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Numerical Mathematics and Advanced Applications 2009
Author: Gunilla Kreiss
Publisher: Springer Science & Business Media
ISBN: 3642117953
Category : Mathematics
Languages : en
Pages : 900
Book Description
xxx
Publisher: Springer Science & Business Media
ISBN: 3642117953
Category : Mathematics
Languages : en
Pages : 900
Book Description
xxx
Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws
Author: Philipp Öffner
Publisher: Springer Nature
ISBN: 3658426209
Category : Mathematics
Languages : en
Pages : 486
Book Description
The book focuses on stability and approximation results concerning recent numerical methods for the numerical solution of hyperbolic conservation laws. The work begins with a detailed and thorough introduction of hyperbolic conservation/balance laws and their numerical treatment. In the main part, recent results in such context are presented focusing on the investigation of approximation properties of discontinuous Galerkin and flux reconstruction methods, the construction of (entropy) stable numerical methods and the extension of existing (entropy) stability results for both semidiscrete and fully discrete schemes, and development of new high-order methods.
Publisher: Springer Nature
ISBN: 3658426209
Category : Mathematics
Languages : en
Pages : 486
Book Description
The book focuses on stability and approximation results concerning recent numerical methods for the numerical solution of hyperbolic conservation laws. The work begins with a detailed and thorough introduction of hyperbolic conservation/balance laws and their numerical treatment. In the main part, recent results in such context are presented focusing on the investigation of approximation properties of discontinuous Galerkin and flux reconstruction methods, the construction of (entropy) stable numerical methods and the extension of existing (entropy) stability results for both semidiscrete and fully discrete schemes, and development of new high-order methods.
Error analysis of summation-by-parts formulations
Author: Viktor Linders
Publisher: Linköping University Electronic Press
ISBN: 9176854272
Category :
Languages : en
Pages : 44
Book Description
In this thesis we consider errors arising from finite difference operators on summation-by-parts (SBP) form, used in the discretisation of partial differential equations. The SBP operators are augmented with simultaneous-approximation-terms (SATs) to weakly impose boundary conditions. The SBP-SAT framework combines high order of accuracy with a systematic construction of provably stable boundary procedures, which renders it suitable for a wide range of problems. The first part of the thesis treats wave propagation problems discretised using SBP operators on coarse grids. Unless special care is taken, inaccurate approximations of the underlying dispersion relation materialises in the form of an incorrect propagation speed. We present a procedure for constructing SBP operators with minimal dispersion error. Experiments indicate that they outperform higher order non-optimal SBP operators for flow problems involving high frequencies and long simulation times. In the second part of the thesis, the formal order of accuracy of SBP operators near boundaries is analysed. We prove that the order in the interior of a diagonal norm based SBP operator must be at least twice that of the boundary stencil, irrespective of the grid point distribution near the boundary. This generalises the classical theory posed on uniform and conforming grids. We further show that for a common class of SBP operators, the diagonal norm defines a quadrature rule of the same order as the interior stencil. Again, this result is independent of the grid. In the final contribution if the thesis, we introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability analyses are performed for continuous and discrete problems. A general condition is obtained that is necessary and sufficient for the transmission problem to satisfy an energy estimate. The theory provides insights into the coupling of fluid flow models, multi-block formulations, numerical filters, interpolation and multi-grid implementations.
Publisher: Linköping University Electronic Press
ISBN: 9176854272
Category :
Languages : en
Pages : 44
Book Description
In this thesis we consider errors arising from finite difference operators on summation-by-parts (SBP) form, used in the discretisation of partial differential equations. The SBP operators are augmented with simultaneous-approximation-terms (SATs) to weakly impose boundary conditions. The SBP-SAT framework combines high order of accuracy with a systematic construction of provably stable boundary procedures, which renders it suitable for a wide range of problems. The first part of the thesis treats wave propagation problems discretised using SBP operators on coarse grids. Unless special care is taken, inaccurate approximations of the underlying dispersion relation materialises in the form of an incorrect propagation speed. We present a procedure for constructing SBP operators with minimal dispersion error. Experiments indicate that they outperform higher order non-optimal SBP operators for flow problems involving high frequencies and long simulation times. In the second part of the thesis, the formal order of accuracy of SBP operators near boundaries is analysed. We prove that the order in the interior of a diagonal norm based SBP operator must be at least twice that of the boundary stencil, irrespective of the grid point distribution near the boundary. This generalises the classical theory posed on uniform and conforming grids. We further show that for a common class of SBP operators, the diagonal norm defines a quadrature rule of the same order as the interior stencil. Again, this result is independent of the grid. In the final contribution if the thesis, we introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability analyses are performed for continuous and discrete problems. A general condition is obtained that is necessary and sufficient for the transmission problem to satisfy an energy estimate. The theory provides insights into the coupling of fluid flow models, multi-block formulations, numerical filters, interpolation and multi-grid implementations.
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016
Author: Marco L. Bittencourt
Publisher: Springer
ISBN: 3319658700
Category : Mathematics
Languages : en
Pages : 681
Book Description
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Publisher: Springer
ISBN: 3319658700
Category : Mathematics
Languages : en
Pages : 681
Book Description
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Eigenvalue analysis and convergence acceleration techniques for summation-by-parts approximations
Author: Andrea Alessandro Ruggiu
Publisher: Linköping University Electronic Press
ISBN: 9176850234
Category :
Languages : en
Pages : 57
Book Description
Many physical phenomena can be described mathematically by means of partial differential equations. These mathematical formulations are said to be well-posed if a unique solution, bounded by the given data, exists. The boundedness of the solution can be established through the so-called energy-method, which leads to an estimate of the solution by means of integration-by-parts. Numerical approximations mimicking integration-by-parts discretely are said to fulfill the Summation-By-Parts (SBP) property. These formulations naturally yield bounded approximate solutions if the boundary conditions are weakly imposed through Simultaneous-Approximation-Terms (SAT). Discrete problems with bounded solutions are said to be energy-stable. Energy-stable and high-order accurate SBP-SAT discretizations for well-posed linear problems were first introduced for centered finite-difference methods. These mathematical formulations, based on boundary conforming grids, allow for an exact mimicking of integration-by-parts. However, other discretizations techniques that do not include one or both boundary nodes, such as pseudo-spectral collocation methods, only fulfill a generalized SBP (GSBP) property but still lead to energy-stable solutions. This thesis consists of two main topics. The first part, which is mostly devoted to theoretical investigations, treats discretizations based on SBP and GSBP operators. A numerical approximation of a conservation law is said to be conservative if the approximate solution mimics the physical conservation property. It is shown that conservative and energy-stable spatial discretizations of variable coefficient problems require an exact numerical mimicking of integration-by-parts. We also discuss the invertibility of the algebraic problems arising from (G)SBP-SAT discretizations in time of energy-stable spatial approximations. We prove that pseudo-spectral collocation methods for the time derivative lead to invertible fully-discrete problems. The same result is proved for second-, fourth- and sixth-order accurate finite-difference based time integration methods. Once the invertibility of (G)SBP-SAT discrete formulations is established, we are interested in efficient algorithms for the unique solution of such problems. To this end, the second part of the thesis has a stronger experimental flavour and deals with convergence acceleration techniques for SBP-SAT approximations. First, we consider a modified Dual Time-Stepping (DTS) technique which makes use of two derivatives in pseudo-time. The new DTS formulation, compared to the classical one, accelerates the convergence to steady-state and reduces the stiffness of the problem. Next, we investigate multi-grid methods. For parabolic problems, highly oscillating error modes are optimally damped by iterative methods, while smooth residuals are transferred to coarser grids. In this case, we show that the Galerkin condition in combination with the SBP-preserving interpolation operators leads to fast convergence. For hyperbolic problems, low frequency error modes are rapidly expelled by grid coarsening, since coarser grids have milder stability restrictions on time steps. For such problems, Total Variation Dimishing Multi-Grid (TVD-MG) allows for faster wave propagation of first order upwind discretizations. In this thesis, we extend low order TVD-MG schemes to high-order SBP-SAT upwind discretizations.
Publisher: Linköping University Electronic Press
ISBN: 9176850234
Category :
Languages : en
Pages : 57
Book Description
Many physical phenomena can be described mathematically by means of partial differential equations. These mathematical formulations are said to be well-posed if a unique solution, bounded by the given data, exists. The boundedness of the solution can be established through the so-called energy-method, which leads to an estimate of the solution by means of integration-by-parts. Numerical approximations mimicking integration-by-parts discretely are said to fulfill the Summation-By-Parts (SBP) property. These formulations naturally yield bounded approximate solutions if the boundary conditions are weakly imposed through Simultaneous-Approximation-Terms (SAT). Discrete problems with bounded solutions are said to be energy-stable. Energy-stable and high-order accurate SBP-SAT discretizations for well-posed linear problems were first introduced for centered finite-difference methods. These mathematical formulations, based on boundary conforming grids, allow for an exact mimicking of integration-by-parts. However, other discretizations techniques that do not include one or both boundary nodes, such as pseudo-spectral collocation methods, only fulfill a generalized SBP (GSBP) property but still lead to energy-stable solutions. This thesis consists of two main topics. The first part, which is mostly devoted to theoretical investigations, treats discretizations based on SBP and GSBP operators. A numerical approximation of a conservation law is said to be conservative if the approximate solution mimics the physical conservation property. It is shown that conservative and energy-stable spatial discretizations of variable coefficient problems require an exact numerical mimicking of integration-by-parts. We also discuss the invertibility of the algebraic problems arising from (G)SBP-SAT discretizations in time of energy-stable spatial approximations. We prove that pseudo-spectral collocation methods for the time derivative lead to invertible fully-discrete problems. The same result is proved for second-, fourth- and sixth-order accurate finite-difference based time integration methods. Once the invertibility of (G)SBP-SAT discrete formulations is established, we are interested in efficient algorithms for the unique solution of such problems. To this end, the second part of the thesis has a stronger experimental flavour and deals with convergence acceleration techniques for SBP-SAT approximations. First, we consider a modified Dual Time-Stepping (DTS) technique which makes use of two derivatives in pseudo-time. The new DTS formulation, compared to the classical one, accelerates the convergence to steady-state and reduces the stiffness of the problem. Next, we investigate multi-grid methods. For parabolic problems, highly oscillating error modes are optimally damped by iterative methods, while smooth residuals are transferred to coarser grids. In this case, we show that the Galerkin condition in combination with the SBP-preserving interpolation operators leads to fast convergence. For hyperbolic problems, low frequency error modes are rapidly expelled by grid coarsening, since coarser grids have milder stability restrictions on time steps. For such problems, Total Variation Dimishing Multi-Grid (TVD-MG) allows for faster wave propagation of first order upwind discretizations. In this thesis, we extend low order TVD-MG schemes to high-order SBP-SAT upwind discretizations.
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014
Author: Robert M. Kirby
Publisher: Springer
ISBN: 3319198009
Category : Computers
Languages : en
Pages : 504
Book Description
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.
Publisher: Springer
ISBN: 3319198009
Category : Computers
Languages : en
Pages : 504
Book Description
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.
Advances in Applied Mathematics, Modeling, and Computational Science
Author: Roderick Melnik
Publisher: Springer Science & Business Media
ISBN: 1461453895
Category : Mathematics
Languages : en
Pages : 248
Book Description
The volume presents a selection of in-depth studies and state-of-the-art surveys of several challenging topics that are at the forefront of modern applied mathematics, mathematical modeling, and computational science. These three areas represent the foundation upon which the methodology of mathematical modeling and computational experiment is built as a ubiquitous tool in all areas of mathematical applications. This book covers both fundamental and applied research, ranging from studies of elliptic curves over finite fields with their applications to cryptography, to dynamic blocking problems, to random matrix theory with its innovative applications. The book provides the reader with state-of-the-art achievements in the development and application of new theories at the interface of applied mathematics, modeling, and computational science. This book aims at fostering interdisciplinary collaborations required to meet the modern challenges of applied mathematics, modeling, and computational science. At the same time, the contributions combine rigorous mathematical and computational procedures and examples from applications ranging from engineering to life sciences, providing a rich ground for graduate student projects.
Publisher: Springer Science & Business Media
ISBN: 1461453895
Category : Mathematics
Languages : en
Pages : 248
Book Description
The volume presents a selection of in-depth studies and state-of-the-art surveys of several challenging topics that are at the forefront of modern applied mathematics, mathematical modeling, and computational science. These three areas represent the foundation upon which the methodology of mathematical modeling and computational experiment is built as a ubiquitous tool in all areas of mathematical applications. This book covers both fundamental and applied research, ranging from studies of elliptic curves over finite fields with their applications to cryptography, to dynamic blocking problems, to random matrix theory with its innovative applications. The book provides the reader with state-of-the-art achievements in the development and application of new theories at the interface of applied mathematics, modeling, and computational science. This book aims at fostering interdisciplinary collaborations required to meet the modern challenges of applied mathematics, modeling, and computational science. At the same time, the contributions combine rigorous mathematical and computational procedures and examples from applications ranging from engineering to life sciences, providing a rich ground for graduate student projects.
Computational Aerodynamics
Author: Antony Jameson
Publisher: Cambridge University Press
ISBN: 1108837883
Category : Science
Languages : en
Pages : 627
Book Description
Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.
Publisher: Cambridge University Press
ISBN: 1108837883
Category : Science
Languages : en
Pages : 627
Book Description
Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.