Author: Jorge Luis González-Velázquez
Publisher: Elsevier
ISBN: 0128230525
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. - Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples - Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics - Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques
A Practical Approach to Fracture Mechanics
Author: Jorge Luis González-Velázquez
Publisher: Elsevier
ISBN: 0128230525
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. - Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples - Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics - Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques
Publisher: Elsevier
ISBN: 0128230525
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. - Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples - Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics - Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques
Damage and Fracture Mechanics
Author: Taoufik Boukharouba
Publisher: Springer Science & Business Media
ISBN: 904812669X
Category : Science
Languages : en
Pages : 616
Book Description
The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.
Publisher: Springer Science & Business Media
ISBN: 904812669X
Category : Science
Languages : en
Pages : 616
Book Description
The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.
Applications of Fracture Mechanics in Failure Assessment
Author: David P. G. Lidbury
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Presents 24 papers from two symposia held during the July 2000 ASME conference. The two symposia discussed development and user experience of advanced methods of fracture mechanics assessment, and the Master Curve method. The failure analysis diagram (FAD) approach to fracture assessment, United Kin
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Presents 24 papers from two symposia held during the July 2000 ASME conference. The two symposia discussed development and user experience of advanced methods of fracture mechanics assessment, and the Master Curve method. The failure analysis diagram (FAD) approach to fracture assessment, United Kin
Application of Fracture Mechanics in Failure Assessment--2003
Author: Poh-Sang Lam
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
Fitness-for-Service Fracture Assessment of Structures Containing Cracks
Author: Uwe Zerbst
Publisher: Academic Press
ISBN: 0080552838
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
The purpose of Fitness-for-Service Fracture Assessment of Structures Containing Cracks is to facilitate the use of fracture mechanics based failure assessment procedures for the evaluation and design of structures and components. All practical structures contain flaws and the optimum combination of cost efficiency and safety whilst achieving the required capability, can only be realised by using state of the art methods such as that represented by the European flaw assessment method SINTAP/FITNET to analyse the safety risk. This book is written by practitioners with extensive experience in both the development and use of integrity assessment methods and provides comprehensive information on the basic principles and use of analytical flaw assessment. It provides an introduction to the method, its background, how it can be applied, its potential and, importantly, its limitations. The explanations are complimented by using a large number of worked examples and validation exercises which illustrate all aspects of the procedure. In addition, for students and engineers who are new to the subject, a comprehensive glossary of basic terms used in fracture mechanics based integrity evaluations is included. The topics addressed include: - Crack driving force (CDF) and failure assessment diagram (FAD) type analyses - Preparation of the input parameters (crack dimensions, stress-strain properties, fracture toughness, statistical aspects) - Determination of the model parameters, (stress intensity factor and yield load solutions) - Treatment of combined primary and secondary loading, together with residual stress effects - Analysis of the effect of constraint effects (treatment of small defects and section size effects) - Treatment of mixed mode loading - Consideration of the influences of strength mismatch - Reliability aspects - Comprehensive description of the use of structural integrity methods to optimise cost effectiveness and safety - Detailed description of how to evaluate the integrity of structures containing cracks - Valuable background information for understanding the methods, their potential and limitations - Large number of worked examples, which demonstrate all aspects of the methods - Descriptive, readable writing style - Applicable to a wide range of interests, from the student (university or self study) to the expert who requires a 'state of the art' document
Publisher: Academic Press
ISBN: 0080552838
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
The purpose of Fitness-for-Service Fracture Assessment of Structures Containing Cracks is to facilitate the use of fracture mechanics based failure assessment procedures for the evaluation and design of structures and components. All practical structures contain flaws and the optimum combination of cost efficiency and safety whilst achieving the required capability, can only be realised by using state of the art methods such as that represented by the European flaw assessment method SINTAP/FITNET to analyse the safety risk. This book is written by practitioners with extensive experience in both the development and use of integrity assessment methods and provides comprehensive information on the basic principles and use of analytical flaw assessment. It provides an introduction to the method, its background, how it can be applied, its potential and, importantly, its limitations. The explanations are complimented by using a large number of worked examples and validation exercises which illustrate all aspects of the procedure. In addition, for students and engineers who are new to the subject, a comprehensive glossary of basic terms used in fracture mechanics based integrity evaluations is included. The topics addressed include: - Crack driving force (CDF) and failure assessment diagram (FAD) type analyses - Preparation of the input parameters (crack dimensions, stress-strain properties, fracture toughness, statistical aspects) - Determination of the model parameters, (stress intensity factor and yield load solutions) - Treatment of combined primary and secondary loading, together with residual stress effects - Analysis of the effect of constraint effects (treatment of small defects and section size effects) - Treatment of mixed mode loading - Consideration of the influences of strength mismatch - Reliability aspects - Comprehensive description of the use of structural integrity methods to optimise cost effectiveness and safety - Detailed description of how to evaluate the integrity of structures containing cracks - Valuable background information for understanding the methods, their potential and limitations - Large number of worked examples, which demonstrate all aspects of the methods - Descriptive, readable writing style - Applicable to a wide range of interests, from the student (university or self study) to the expert who requires a 'state of the art' document
Mechanics of Fracture Initiation and Propagation
Author: George C. Sih
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 440
Book Description
The assessment of crack initiation and/or propagation has been the subject of many past discussions on fracture mechanics. Depending on how the chosen failure criterion is combined with the solution of a particular theory of continuum mechanics, the outcome could vary over a wide range. Mod elling of the material damage process could be elusive if the scale level of observation is left undefined. The specification of physical dimension alone is not sufficient because time and temperature also play an intimate role. It is only when the latter two variables are fixed that failure predictions can be simplified. The sudden fracture of material with a pre-existing crack is a case in point. Barring changes in the local temperature,* the energy released to create a unit surface area of an existing crack can be obtained by considering the change in elastic energy of the system before and after crack extension. Such a quantity has been referred to as the critical energy release rate, G e, or stress intensity factor, K Ie. Other parameters, such as the crack opening displacement (COD), path-independent J-integral, etc. , have been proposed; their relation to the fracture process is also based on the energy release concept. These one-parameter approaches, however, are unable simultaneously to account for the failure process of crack initiation, propagation and onset of rapid fracture. A review on the use of G, K I, COD, J, etc. , has been made by Sih [1,2].
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 440
Book Description
The assessment of crack initiation and/or propagation has been the subject of many past discussions on fracture mechanics. Depending on how the chosen failure criterion is combined with the solution of a particular theory of continuum mechanics, the outcome could vary over a wide range. Mod elling of the material damage process could be elusive if the scale level of observation is left undefined. The specification of physical dimension alone is not sufficient because time and temperature also play an intimate role. It is only when the latter two variables are fixed that failure predictions can be simplified. The sudden fracture of material with a pre-existing crack is a case in point. Barring changes in the local temperature,* the energy released to create a unit surface area of an existing crack can be obtained by considering the change in elastic energy of the system before and after crack extension. Such a quantity has been referred to as the critical energy release rate, G e, or stress intensity factor, K Ie. Other parameters, such as the crack opening displacement (COD), path-independent J-integral, etc. , have been proposed; their relation to the fracture process is also based on the energy release concept. These one-parameter approaches, however, are unable simultaneously to account for the failure process of crack initiation, propagation and onset of rapid fracture. A review on the use of G, K I, COD, J, etc. , has been made by Sih [1,2].
Application of Fracture Mechanics to Materials and Structures
Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9400961464
Category : Science
Languages : en
Pages : 1096
Book Description
An International Conference on the Application of Fracture Mechanics to Ma terials and Structures was held at the Hotel Kolpinghaus in Freiburg, West Ger many, June 20-24, 1983. It was attended by more than 250 participants from different countries which include Austria, Canada, Czechoslovakia, Democratic Republic of Germany, Denmark, Federal Republic of Germany, Finland, France, Greece, Hungary, Israel, Italy, Japan, Netherlands, Norway, People's Republic of China, Portugal, Sweden, Switzerland, United Kingdom, United States of America, USSR and Yugoslavia. Conference Co-Chairmen were Professor G. C. Sih, Lehigh University, Bethle hem, Pennsylvania, U. S. A. , Dr. E. Sommer, Fraunhofer-Institut fur Werkstoff mechanik, Freiburg, FRG and Professor W. Dahl, Rheinisch-Westfalische Technische Hochschule, Aachen, FRG. Dr. Wenrich, as the representative of the Land Baden-WUrttemberg, delivered the opening address with the remarks that International Conferences can serve the means to further enhance the technology development of a country. He empha sized that the Federal Republic of Germany is presently in need of strengthening the engineering manpower in order to keep her in a competitive position. The Conference was officially cast off with the leading plenary lectures that under lined the theme of the technical lectures for the first day. This pattern was observed for the five-day meeting. The interplay between material and design re quirements was the theme and emphasized in many of the technical presentations that amounted to approximately ninety (90) papers.
Publisher: Springer Science & Business Media
ISBN: 9400961464
Category : Science
Languages : en
Pages : 1096
Book Description
An International Conference on the Application of Fracture Mechanics to Ma terials and Structures was held at the Hotel Kolpinghaus in Freiburg, West Ger many, June 20-24, 1983. It was attended by more than 250 participants from different countries which include Austria, Canada, Czechoslovakia, Democratic Republic of Germany, Denmark, Federal Republic of Germany, Finland, France, Greece, Hungary, Israel, Italy, Japan, Netherlands, Norway, People's Republic of China, Portugal, Sweden, Switzerland, United Kingdom, United States of America, USSR and Yugoslavia. Conference Co-Chairmen were Professor G. C. Sih, Lehigh University, Bethle hem, Pennsylvania, U. S. A. , Dr. E. Sommer, Fraunhofer-Institut fur Werkstoff mechanik, Freiburg, FRG and Professor W. Dahl, Rheinisch-Westfalische Technische Hochschule, Aachen, FRG. Dr. Wenrich, as the representative of the Land Baden-WUrttemberg, delivered the opening address with the remarks that International Conferences can serve the means to further enhance the technology development of a country. He empha sized that the Federal Republic of Germany is presently in need of strengthening the engineering manpower in order to keep her in a competitive position. The Conference was officially cast off with the leading plenary lectures that under lined the theme of the technical lectures for the first day. This pattern was observed for the five-day meeting. The interplay between material and design re quirements was the theme and emphasized in many of the technical presentations that amounted to approximately ninety (90) papers.
Fracture Mechanics, Second Edition
Author: Michael Janssen
Publisher: CRC Press
ISBN: 0415346223
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Since the first edition published in 1991, this has been one of the top-selling books in the field. The first and second editions have been used as a required text in over 100 universities worldwide and have become indispensable reference for thousands of practising engineers as well. The third edition reflects recent advances in the field, although it still retains the characteristics that made it a best-selling title. Providing thorough coverage of a wide range of topics, this book covers both theoretical and practical aspects of fracture mechanics and integrates materials science with solid mechanics. This edition includes expanded coverage of weight functions and a new chapter on environmental cracking.
Publisher: CRC Press
ISBN: 0415346223
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Since the first edition published in 1991, this has been one of the top-selling books in the field. The first and second editions have been used as a required text in over 100 universities worldwide and have become indispensable reference for thousands of practising engineers as well. The third edition reflects recent advances in the field, although it still retains the characteristics that made it a best-selling title. Providing thorough coverage of a wide range of topics, this book covers both theoretical and practical aspects of fracture mechanics and integrates materials science with solid mechanics. This edition includes expanded coverage of weight functions and a new chapter on environmental cracking.
Structural Integrity Assessment
Author: P. Stanley
Publisher: CRC Press
ISBN: 1482286785
Category : Architecture
Languages : en
Pages : 443
Book Description
The assessment of structural integrity is a vitally important consideration in many fields of engineering, which has an influence on the full range of professional activities from conception, design and analysis, through operation to residual life evaluation and possible life extension. In devising satisfactory procedures for this purpose there is
Publisher: CRC Press
ISBN: 1482286785
Category : Architecture
Languages : en
Pages : 443
Book Description
The assessment of structural integrity is a vitally important consideration in many fields of engineering, which has an influence on the full range of professional activities from conception, design and analysis, through operation to residual life evaluation and possible life extension. In devising satisfactory procedures for this purpose there is
The Theory of Materials Failure
Author: Richard M. Christensen
Publisher: Oxford University Press, USA
ISBN: 0199662118
Category : Science
Languages : en
Pages : 297
Book Description
A complete and comprehensive theory of failure is developed for homogeneous and isotropic materials. The full range of materials types are covered from very ductile metals to extremely brittle glasses and minerals. Two failure properties suffice to predict the general failure conditions under all states of stress. With this foundation to build upon, many other aspects of failure are also treated, such as extensions to anisotropic fiber composites, cumulative damage, creep and fatigue, and microscale and nanoscale approaches to failure.
Publisher: Oxford University Press, USA
ISBN: 0199662118
Category : Science
Languages : en
Pages : 297
Book Description
A complete and comprehensive theory of failure is developed for homogeneous and isotropic materials. The full range of materials types are covered from very ductile metals to extremely brittle glasses and minerals. Two failure properties suffice to predict the general failure conditions under all states of stress. With this foundation to build upon, many other aspects of failure are also treated, such as extensions to anisotropic fiber composites, cumulative damage, creep and fatigue, and microscale and nanoscale approaches to failure.