Application of Reliability Estimating for Electronic Equipment

Application of Reliability Estimating for Electronic Equipment PDF Author: Jack Gordon Osborne
Publisher:
ISBN:
Category : Reliability (Engineering)
Languages : en
Pages : 178

Book Description


Estimating Device Reliability:

Estimating Device Reliability: PDF Author: Franklin R. Nash
Publisher: Springer
ISBN: 079239304X
Category : Technology & Engineering
Languages : en
Pages : 214

Book Description
Estimating Device Reliability: Assessment of Credibility is concerned with the plausibility of reliability estimates obtained from statistical models. Statistical predictions are necessary because technology is always pushing into unexplored areas faster than devices can be made long-lived by design. Flawed reliability methodologies can produce disastrous results, an outstanding example of which is the catastrophic failure of the manned space shuttle CHALLENGER in January 1986. This issue is not whether, but which, statistical models should be used. The issue is not making reliability estimates, but is instead their credibility. The credibility questions explored in the context of practical applications include: What does the confidence level associated with the use of statistical model mean? Is the numerical result associated with a high confidence level beyond dispute? When is it appropriate to use the exponential (constant hazard rate) model? Does this model always provide the most conservative reliability estimate? Are the results of traditional `random' failure hazard rate calculations tenable? Are there persuasive alternatives? What model should be used to describe the useful life of a device when wearout is absent? When Weibull and lognormal failure plots containing a large number of failure times appear similar, how should the correct wearout model be selected? Is it important to distinguish between a conservative upper bound on a probability of failure and a realistic estimate of the same probability? Estimating Device Reliability: Assessment of Credibility is for those who are obliged to make reliability calculations with a paucity of somewhat corrupt data, by using inexact models, and by making physical assumptions which are impractical to verify. Illustrative examples deal with a variety of electronic devices, ICs and lasers.

Reliability of Electronic Components

Reliability of Electronic Components PDF Author: Titu I. Bajenescu
Publisher: Springer Science & Business Media
ISBN: 3642585051
Category : Technology & Engineering
Languages : en
Pages : 547

Book Description
This application-oriented professional book explains why components fail, addressing the needs of engineers who apply reliability principles in design, manufacture, testing and field service. A detailed index, a glossary, acronym lists, reliability dictionaries and a rich specific bibliography complete the book.

Reliability and Failure of Electronic Materials and Devices

Reliability and Failure of Electronic Materials and Devices PDF Author: Milton Ohring
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 759

Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

Practical Reliability Of Electronic Equipment And Products

Practical Reliability Of Electronic Equipment And Products PDF Author: Eugene R. Hnatek
Publisher: CRC Press
ISBN: 0824743547
Category : Technology & Engineering
Languages : en
Pages : 433

Book Description
Practical Reliability of Electronic Equipment and Products will help electrical, electronics, manufacturing, mechanical, systems design, and reliability engineers; electronics production managers; electronic circuit designers; and upper-level undergraduate and graduate students in these disciplines.

Reliability Abstracts and Technical Reviews

Reliability Abstracts and Technical Reviews PDF Author:
Publisher:
ISBN:
Category : Reliability (Engineering)
Languages : en
Pages : 920

Book Description


Reliability Growth

Reliability Growth PDF Author: Panel on Reliability Growth Methods for Defense Systems
Publisher: National Academy Press
ISBN: 9780309314749
Category : Technology & Engineering
Languages : en
Pages : 235

Book Description
A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.

Electronics Reliability–Calculation and Design

Electronics Reliability–Calculation and Design PDF Author: Geoffrey W. A. Dummer
Publisher: Elsevier
ISBN: 1483149269
Category : Technology & Engineering
Languages : en
Pages : 249

Book Description
Electronics Reliability–Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of measurements, and the normal and binomial distributions. Separate chapters deal with techniques for calculating equipment and system reliability; safety and derating factors; and the effects of constructional methods on reliability. Subsequent chapters cover environmental effects on reliability; improved reliability through microelectronics or integrated circuits; and failure rates for electronic components. Each chapter concludes with questions to enable students to test their understanding of the topics discussed. This book offers students an introduction to the subject of reliability in a form that is easily assimilated. It also serves as a reference to the various aspects contributing towards increased reliability of both electronic equipment and complete systems.

Reliability Engineering

Reliability Engineering PDF Author: Kailash C. Kapur
Publisher: John Wiley & Sons
ISBN: 1118140672
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
An Integrated Approach to Product Development Reliability Engineering presents an integrated approach to the design, engineering, and management of reliability activities throughout the life cycle of a product, including concept, research and development, design, manufacturing, assembly, sales, and service. Containing illustrative guides that include worked problems, numerical examples, homework problems, a solutions manual, and class-tested materials, it demonstrates to product development and manufacturing professionals how to distribute key reliability practices throughout an organization. The authors explain how to integrate reliability methods and techniques in the Six Sigma process and Design for Six Sigma (DFSS). They also discuss relationships between warranty and reliability, as well as legal and liability issues. Other topics covered include: Reliability engineering in the 21st Century Probability life distributions for reliability analysis Process control and process capability Failure modes, mechanisms, and effects analysis Health monitoring and prognostics Reliability tests and reliability estimation Reliability Engineering provides a comprehensive list of references on the topics covered in each chapter. It is an invaluable resource for those interested in gaining fundamental knowledge of the practical aspects of reliability in design, manufacturing, and testing. In addition, it is useful for implementation and management of reliability programs.

Failure Analysis

Failure Analysis PDF Author: Marius Bazu
Publisher: John Wiley & Sons
ISBN: 1119990009
Category : Technology & Engineering
Languages : en
Pages : 372

Book Description
Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.