Advances in Metaheuristics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in Metaheuristics PDF full book. Access full book title Advances in Metaheuristics by Luca Di Gaspero. Download full books in PDF and EPUB format.

Advances in Metaheuristics

Advances in Metaheuristics PDF Author: Luca Di Gaspero
Publisher: Springer Science & Business Media
ISBN: 146146322X
Category : Business & Economics
Languages : en
Pages : 193

Book Description
Metaheuristics have been a very active research topic for more than two decades. During this time many new metaheuristic strategies have been devised, they have been experimentally tested and improved on challenging benchmark problems, and they have proven to be important tools for tackling optimization tasks in a large number of practical applications. In other words, metaheuristics are nowadays established as one of the main search paradigms for tackling computationally hard problems. Still, there are a large number of research challenges in the area of metaheuristics. These challenges range from more fundamental questions on theoretical properties and performance guarantees, empirical algorithm analysis, the effective configuration of metaheuristic algorithms, approaches to combine metaheuristics with other algorithmic techniques, towards extending the available techniques to tackle ever more challenging problems. This edited volume grew out of the contributions presented at the ninth Metaheuristics International Conference that was held in Udine, Italy, 25-28 July 2011. The conference comprised 117 presentations of peer-reviewed contributions and 3 invited talks, and it has been attended by 169 delegates. The chapters that are collected in this book exemplify contributions to several of the research directions outlined above.

Advances in Metaheuristics

Advances in Metaheuristics PDF Author: Luca Di Gaspero
Publisher: Springer Science & Business Media
ISBN: 146146322X
Category : Business & Economics
Languages : en
Pages : 193

Book Description
Metaheuristics have been a very active research topic for more than two decades. During this time many new metaheuristic strategies have been devised, they have been experimentally tested and improved on challenging benchmark problems, and they have proven to be important tools for tackling optimization tasks in a large number of practical applications. In other words, metaheuristics are nowadays established as one of the main search paradigms for tackling computationally hard problems. Still, there are a large number of research challenges in the area of metaheuristics. These challenges range from more fundamental questions on theoretical properties and performance guarantees, empirical algorithm analysis, the effective configuration of metaheuristic algorithms, approaches to combine metaheuristics with other algorithmic techniques, towards extending the available techniques to tackle ever more challenging problems. This edited volume grew out of the contributions presented at the ninth Metaheuristics International Conference that was held in Udine, Italy, 25-28 July 2011. The conference comprised 117 presentations of peer-reviewed contributions and 3 invited talks, and it has been attended by 169 delegates. The chapters that are collected in this book exemplify contributions to several of the research directions outlined above.

Chemical Production Scheduling

Chemical Production Scheduling PDF Author: Christos T. Maravelias
Publisher: Cambridge University Press
ISBN: 1107154758
Category : Mathematics
Languages : en
Pages : 459

Book Description
Understand common scheduling as well as other advanced operational problems with this valuable reference from a recognized leader in the field. Beginning with basic principles and an overview of linear and mixed-integer programming, this unified treatment introduces the fundamental ideas underpinning most modeling approaches, and will allow you to easily develop your own models. With more than 150 figures, the basic concepts and ideas behind the development of different approaches are clearly illustrated. Addresses a wide range of problems arising in diverse industrial sectors, from oil and gas to fine chemicals, and from commodity chemicals to food manufacturing. A perfect resource for engineering and computer science students, researchers working in the area, and industrial practitioners.

Handbook of Production Scheduling

Handbook of Production Scheduling PDF Author: Jeffrey W. Herrmann
Publisher: Springer Science & Business Media
ISBN: 0387331174
Category : Business & Economics
Languages : en
Pages : 331

Book Description
This book concentrates on real-world production scheduling in factories and industrial settings. It includes industry case studies that use innovative techniques as well as academic research results that can be used to improve production scheduling. Its purpose is to present scheduling principles, advanced tools, and examples of innovative scheduling systems to persons who could use this information to improve their own production scheduling.

Applications of Optimization with Xpress-MP

Applications of Optimization with Xpress-MP PDF Author: Christelle Guéret
Publisher: Twayne Publishers
ISBN: 9780954350307
Category : Linear programming
Languages : en
Pages : 349

Book Description


Ant Colony Optimization

Ant Colony Optimization PDF Author: Marco Dorigo
Publisher: MIT Press
ISBN: 9780262042192
Category : Computers
Languages : en
Pages : 324

Book Description
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.

Artificial Intelligence Applications and Innovations

Artificial Intelligence Applications and Innovations PDF Author: Ilias Maglogiannis
Publisher:
ISBN: 9783030791513
Category :
Languages : en
Pages : 0

Book Description
This book constitutes the refereed proceedings of the 17th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2021, held virtually and in Hersonissos, Crete, Greece, in June 2021. The 50 full papers and 11 short papers presented were carefully reviewed and selected from 113 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections: adaptive modeling/ neuroscience; AI in biomedical applications; AI impacts/ big data; automated machine learning; autonomous agents; clustering; convolutional NN; data mining/ word counts; deep learning; fuzzy modeling; hyperdimensional computing; Internet of Things/ Internet of energy; machine learning; multi-agent systems; natural language; recommendation systems; sentiment analysis; and smart blockchain applications/ cybersecurity. Chapter "Improving the Flexibility of Production Scheduling in Flat Steel Production Through Standard and AI-based Approaches: Challenges and Perspective" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Resource-Constrained Project Scheduling

Resource-Constrained Project Scheduling PDF Author: Christian Artigues
Publisher: John Wiley & Sons
ISBN: 1118623703
Category : Technology & Engineering
Languages : en
Pages : 235

Book Description
This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.

Genetic Programming for Production Scheduling

Genetic Programming for Production Scheduling PDF Author: Fangfang Zhang
Publisher: Springer Nature
ISBN: 981164859X
Category : Computers
Languages : en
Pages : 357

Book Description
This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP’s performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future. Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering.

Engineering Optimization

Engineering Optimization PDF Author: Xin-She Yang
Publisher: John Wiley & Sons
ISBN: 0470640413
Category : Mathematics
Languages : en
Pages : 377

Book Description
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems

Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems PDF Author: Alexandre Dolgui
Publisher: Springer Nature
ISBN: 303085874X
Category : Computers
Languages : en
Pages : 779

Book Description
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.* The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.