Author: Erwin Engeler
Publisher: Springer Science & Business Media
ISBN: 3642780520
Category : Mathematics
Languages : en
Pages : 105
Book Description
This book appeared about ten years ago in Gennan. It started as notes for a course which I gave intermittently at the ETH over a number of years. Following repeated suggestions, this English translation was commissioned by Springer; they were most fortunate in finding translators whose mathemati cal stature, grasp of the language and unselfish dedication to the essentially thankless task of rendering the text comprehensible in a second language, both impresses and shames me. Therefore, my thanks go to Dr. Roberto Minio, now Darmstadt and Professor Charles Thomas, Cambridge. The task of preparing a La'JEX-version of the text was extremely daunting, owing to the complexity and diversity of the symbolisms inherent in the various parts of the book. Here, my warm thanks go to Barbara Aquilino of the Mathematics Department of the ETH, who spent tedious but exacting hours in front of her Olivetti. The present book is not primarily intended to teach logic and axiomat ics as such, nor is it a complete survey of what was once called "elementary mathematics from a higher standpoint". Rather, its goal is to awaken a certain critical attitude in the student and to help give this attitude some solid foun dation. Our mathematics students, having been drilled for years in high-school and college, and having studied the immense edifice of analysis, regrettably come away convinced that they understand the concepts of real numbers, Euclidean space, and algorithm.
Foundations of Mathematics
Author: Erwin Engeler
Publisher: Springer Science & Business Media
ISBN: 3642780520
Category : Mathematics
Languages : en
Pages : 105
Book Description
This book appeared about ten years ago in Gennan. It started as notes for a course which I gave intermittently at the ETH over a number of years. Following repeated suggestions, this English translation was commissioned by Springer; they were most fortunate in finding translators whose mathemati cal stature, grasp of the language and unselfish dedication to the essentially thankless task of rendering the text comprehensible in a second language, both impresses and shames me. Therefore, my thanks go to Dr. Roberto Minio, now Darmstadt and Professor Charles Thomas, Cambridge. The task of preparing a La'JEX-version of the text was extremely daunting, owing to the complexity and diversity of the symbolisms inherent in the various parts of the book. Here, my warm thanks go to Barbara Aquilino of the Mathematics Department of the ETH, who spent tedious but exacting hours in front of her Olivetti. The present book is not primarily intended to teach logic and axiomat ics as such, nor is it a complete survey of what was once called "elementary mathematics from a higher standpoint". Rather, its goal is to awaken a certain critical attitude in the student and to help give this attitude some solid foun dation. Our mathematics students, having been drilled for years in high-school and college, and having studied the immense edifice of analysis, regrettably come away convinced that they understand the concepts of real numbers, Euclidean space, and algorithm.
Publisher: Springer Science & Business Media
ISBN: 3642780520
Category : Mathematics
Languages : en
Pages : 105
Book Description
This book appeared about ten years ago in Gennan. It started as notes for a course which I gave intermittently at the ETH over a number of years. Following repeated suggestions, this English translation was commissioned by Springer; they were most fortunate in finding translators whose mathemati cal stature, grasp of the language and unselfish dedication to the essentially thankless task of rendering the text comprehensible in a second language, both impresses and shames me. Therefore, my thanks go to Dr. Roberto Minio, now Darmstadt and Professor Charles Thomas, Cambridge. The task of preparing a La'JEX-version of the text was extremely daunting, owing to the complexity and diversity of the symbolisms inherent in the various parts of the book. Here, my warm thanks go to Barbara Aquilino of the Mathematics Department of the ETH, who spent tedious but exacting hours in front of her Olivetti. The present book is not primarily intended to teach logic and axiomat ics as such, nor is it a complete survey of what was once called "elementary mathematics from a higher standpoint". Rather, its goal is to awaken a certain critical attitude in the student and to help give this attitude some solid foun dation. Our mathematics students, having been drilled for years in high-school and college, and having studied the immense edifice of analysis, regrettably come away convinced that they understand the concepts of real numbers, Euclidean space, and algorithm.
Making up Numbers: A History of Invention in Mathematics
Author: Ekkehard Kopp
Publisher: Open Book Publishers
ISBN: 1800640978
Category : Mathematics
Languages : en
Pages : 280
Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
Publisher: Open Book Publishers
ISBN: 1800640978
Category : Mathematics
Languages : en
Pages : 280
Book Description
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
The First Six Books of the Elements of Euclid
Author: John Casey
Publisher:
ISBN: 9781088465103
Category :
Languages : en
Pages : 212
Book Description
This edition of the Elements of Euclid, undertaken at the request of the principalsof some of the leading Colleges and Schools of Ireland, is intended tosupply a want much felt by teachers at the present day-the production of awork which, while giving the unrivalled original in all its integrity, would alsocontain the modern conceptions and developments of the portion of Geometryover which the Elements extend. A cursory examination of the work will showthat the Editor has gone much further in this latter direction than any of hispredecessors, for it will be found to contain, not only more actual matter thanis given in any of theirs with which he is acquainted, but also much of a specialcharacter, which is not given, so far as he is aware, in any former work on thesubject. The great extension of geometrical methods in recent times has madesuch a work a necessity for the student, to enable him not only to read with advantage, but even to understand those mathematical writings of modern timeswhich require an accurate knowledge of Elementary Geometry, and to which itis in reality the best introduction
Publisher:
ISBN: 9781088465103
Category :
Languages : en
Pages : 212
Book Description
This edition of the Elements of Euclid, undertaken at the request of the principalsof some of the leading Colleges and Schools of Ireland, is intended tosupply a want much felt by teachers at the present day-the production of awork which, while giving the unrivalled original in all its integrity, would alsocontain the modern conceptions and developments of the portion of Geometryover which the Elements extend. A cursory examination of the work will showthat the Editor has gone much further in this latter direction than any of hispredecessors, for it will be found to contain, not only more actual matter thanis given in any of theirs with which he is acquainted, but also much of a specialcharacter, which is not given, so far as he is aware, in any former work on thesubject. The great extension of geometrical methods in recent times has madesuch a work a necessity for the student, to enable him not only to read with advantage, but even to understand those mathematical writings of modern timeswhich require an accurate knowledge of Elementary Geometry, and to which itis in reality the best introduction
Geometry: Euclid and Beyond
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 0387226761
Category : Mathematics
Languages : en
Pages : 535
Book Description
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
Publisher: Springer Science & Business Media
ISBN: 0387226761
Category : Mathematics
Languages : en
Pages : 535
Book Description
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
MODERN GEOMETRY
Mathematical Methods in Linguistics
Author: Barbara B.H. Partee
Publisher: Springer Science & Business Media
ISBN: 9789027722454
Category : Language Arts & Disciplines
Languages : en
Pages : 692
Book Description
Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.
Publisher: Springer Science & Business Media
ISBN: 9789027722454
Category : Language Arts & Disciplines
Languages : en
Pages : 692
Book Description
Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.
Schaum's Outline of Geometry, 5th Edition
Author: Christopher Thomas
Publisher: McGraw Hill Professional
ISBN: 0071795413
Category : Study Aids
Languages : en
Pages : 339
Book Description
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes more than 650 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 25 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you 665 fully solved problems Concise explanations of all geometry concepts Support for all major textbooks for geometry courses Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!
Publisher: McGraw Hill Professional
ISBN: 0071795413
Category : Study Aids
Languages : en
Pages : 339
Book Description
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes more than 650 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 25 detailed videos featuring Math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you 665 fully solved problems Concise explanations of all geometry concepts Support for all major textbooks for geometry courses Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores!
Elementary College Geometry
Author: Henry Africk
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry