Author: Vincent Gillet
Publisher: World Scientific
ISBN: 9814506591
Category : Science
Languages : en
Pages : 174
Book Description
This book is concerned with the practical aspects of solving angular momentum problems. The novel but fully tested-out method (the Invariant Graph Method) allows one to write down from a single graph the complete final result of the problem. The drawing of the graph involves very few simple, essentially self-evident rules. Still it is a powerful tool to easily solve the most involved physical problems.The method is introduced step-by-step in a sequence of examples, beginning with the simplest matrix elements, and ending with the most general case of a reaction including angular distributions and correlations. The many-body and particle anti-particle systems are fully developed. All aspects: wave functions, vectors, operators, Fock space state vectors and operators, etc., are treated on the same footing. All concepts of angular momentum theory acquire a transparent meaning. Hence the book is valuable not only as a handbook in problem solving, but extremely so as an adjunct in any course on advanced qunatum physics, atomic, molecular, nuclear and particle physics.
Angular Momentum Calculus In Quantum Physics
Author: Vincent Gillet
Publisher: World Scientific
ISBN: 9814506591
Category : Science
Languages : en
Pages : 174
Book Description
This book is concerned with the practical aspects of solving angular momentum problems. The novel but fully tested-out method (the Invariant Graph Method) allows one to write down from a single graph the complete final result of the problem. The drawing of the graph involves very few simple, essentially self-evident rules. Still it is a powerful tool to easily solve the most involved physical problems.The method is introduced step-by-step in a sequence of examples, beginning with the simplest matrix elements, and ending with the most general case of a reaction including angular distributions and correlations. The many-body and particle anti-particle systems are fully developed. All aspects: wave functions, vectors, operators, Fock space state vectors and operators, etc., are treated on the same footing. All concepts of angular momentum theory acquire a transparent meaning. Hence the book is valuable not only as a handbook in problem solving, but extremely so as an adjunct in any course on advanced qunatum physics, atomic, molecular, nuclear and particle physics.
Publisher: World Scientific
ISBN: 9814506591
Category : Science
Languages : en
Pages : 174
Book Description
This book is concerned with the practical aspects of solving angular momentum problems. The novel but fully tested-out method (the Invariant Graph Method) allows one to write down from a single graph the complete final result of the problem. The drawing of the graph involves very few simple, essentially self-evident rules. Still it is a powerful tool to easily solve the most involved physical problems.The method is introduced step-by-step in a sequence of examples, beginning with the simplest matrix elements, and ending with the most general case of a reaction including angular distributions and correlations. The many-body and particle anti-particle systems are fully developed. All aspects: wave functions, vectors, operators, Fock space state vectors and operators, etc., are treated on the same footing. All concepts of angular momentum theory acquire a transparent meaning. Hence the book is valuable not only as a handbook in problem solving, but extremely so as an adjunct in any course on advanced qunatum physics, atomic, molecular, nuclear and particle physics.
Angular Momentum Calculus in Quantum Physics
Author: Michael Danos
Publisher: World Scientific
ISBN: 9789810204129
Category : Science
Languages : en
Pages : 178
Book Description
This book is concerned with the practical aspects of solving angular momentum problems. The novel but fully tested-out method (the Invariant Graph Method) allows one to write down from a single graph the complete final result of the problem. The drawing of the graph involves very few simple, essentially self-evident rules. Still it is a powerful tool to easily solve the most involved physical problems.The method is introduced step-by-step in a sequence of examples, beginning with the simplest matrix elements, and ending with the most general case of a reaction including angular distributions and correlations. The many-body and particle anti-particle systems are fully developed. All aspects: wave functions, vectors, operators, Fock space state vectors and operators, etc., are treated on the same footing. All concepts of angular momentum theory acquire a transparent meaning. Hence the book is valuable not only as a handbook in problem solving, but extremely so as an adjunct in any course on advanced qunatum physics, atomic, molecular, nuclear and particle physics.
Publisher: World Scientific
ISBN: 9789810204129
Category : Science
Languages : en
Pages : 178
Book Description
This book is concerned with the practical aspects of solving angular momentum problems. The novel but fully tested-out method (the Invariant Graph Method) allows one to write down from a single graph the complete final result of the problem. The drawing of the graph involves very few simple, essentially self-evident rules. Still it is a powerful tool to easily solve the most involved physical problems.The method is introduced step-by-step in a sequence of examples, beginning with the simplest matrix elements, and ending with the most general case of a reaction including angular distributions and correlations. The many-body and particle anti-particle systems are fully developed. All aspects: wave functions, vectors, operators, Fock space state vectors and operators, etc., are treated on the same footing. All concepts of angular momentum theory acquire a transparent meaning. Hence the book is valuable not only as a handbook in problem solving, but extremely so as an adjunct in any course on advanced qunatum physics, atomic, molecular, nuclear and particle physics.
Angular Momentum in Quantum Physics
Author: L. C. Biedenharn
Publisher: Cambridge University Press
ISBN: 9780521102445
Category : Science
Languages : en
Pages : 0
Book Description
This 1985 text develops the theory of angular momentum from the viewpoint of a fundamental symmetry in nature and shows how this concept relates to applied areas of research in modern quantum physics.
Publisher: Cambridge University Press
ISBN: 9780521102445
Category : Science
Languages : en
Pages : 0
Book Description
This 1985 text develops the theory of angular momentum from the viewpoint of a fundamental symmetry in nature and shows how this concept relates to applied areas of research in modern quantum physics.
The Physics of Quantum Mechanics
Author: James Binney
Publisher: Oxford University Press, USA
ISBN: 0199688575
Category : Science
Languages : en
Pages : 408
Book Description
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.
Publisher: Oxford University Press, USA
ISBN: 0199688575
Category : Science
Languages : en
Pages : 408
Book Description
This title gives students a good understanding of how quantum mechanics describes the material world. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world.
Quantum Physics For Dummies
Author: Steven Holzner
Publisher: John Wiley & Sons
ISBN: 111846088X
Category : Science
Languages : en
Pages : 339
Book Description
Your plain-English guide to understanding and working with the micro world Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more Quantum physics — also called quantum mechanics or quantum field theory — can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, from atoms to particles to gases and beyond. Plus, it's packed with fully explained examples to help you tackle the tricky equations like a pro! Compatible with any classroom course — study at your own pace and prepare for graduate or professional exams Your journey begins here — understand what quantum physics is and what kinds of problems it can solve Know the basic math — from state vectors to quantum matrix manipulations, get the foundation you need to proceed Put quantum physics to work — make sense of Schrödinger's equation and handle particles bound in square wells and harmonic oscillators Solve problems in three dimensions — use the full operators to handle wave functions and eigenvectors to find the natural wave functions of a system Discover the latest research — learn the cutting-edge quantum physics theories that aim to explain the universe itself
Publisher: John Wiley & Sons
ISBN: 111846088X
Category : Science
Languages : en
Pages : 339
Book Description
Your plain-English guide to understanding and working with the micro world Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more Quantum physics — also called quantum mechanics or quantum field theory — can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, from atoms to particles to gases and beyond. Plus, it's packed with fully explained examples to help you tackle the tricky equations like a pro! Compatible with any classroom course — study at your own pace and prepare for graduate or professional exams Your journey begins here — understand what quantum physics is and what kinds of problems it can solve Know the basic math — from state vectors to quantum matrix manipulations, get the foundation you need to proceed Put quantum physics to work — make sense of Schrödinger's equation and handle particles bound in square wells and harmonic oscillators Solve problems in three dimensions — use the full operators to handle wave functions and eigenvectors to find the natural wave functions of a system Discover the latest research — learn the cutting-edge quantum physics theories that aim to explain the universe itself
Discrete Quantum Mechanics
Author: H. Thomas Williams
Publisher: Morgan & Claypool Publishers
ISBN: 1681741253
Category : Science
Languages : en
Pages : 137
Book Description
After a quarter century of discoveries that rattled the foundations of classical mechanics and electrodynamics, the year 1926 saw the publication of two works intended to provide a theoretical structure to support new quantum explanations of the subatomic world. Heisenberg's matrix mechanics and Schrodinger’s wave mechanics provided compatible but mathematically disparate ways of unifying the discoveries of Planck, Einstein, Bohr and many others. Efforts began immediately to prove the equivalence of these two structures, culminated successfully by John von Neumann’s 1932 volume "Mathematical Foundations of Quantum Mechanics." This forms the springboard for the current effort. We begin with a presentation of a minimal set of von Neumann postulates while introducing language and notation to facilitate subsequent discussion of quantum calculations based in finite dimensional Hilbert spaces. Chapters which follow address two-state quantum systems (with spin one-half as the primary example), entanglement of multiple two-state systems, quantum angular momentum theory and quantum approaches to statistical mechanics. A concluding chapter gives an overview of issues associated with quantum mechanics in continuous infinite-dimensional Hilbert spaces.
Publisher: Morgan & Claypool Publishers
ISBN: 1681741253
Category : Science
Languages : en
Pages : 137
Book Description
After a quarter century of discoveries that rattled the foundations of classical mechanics and electrodynamics, the year 1926 saw the publication of two works intended to provide a theoretical structure to support new quantum explanations of the subatomic world. Heisenberg's matrix mechanics and Schrodinger’s wave mechanics provided compatible but mathematically disparate ways of unifying the discoveries of Planck, Einstein, Bohr and many others. Efforts began immediately to prove the equivalence of these two structures, culminated successfully by John von Neumann’s 1932 volume "Mathematical Foundations of Quantum Mechanics." This forms the springboard for the current effort. We begin with a presentation of a minimal set of von Neumann postulates while introducing language and notation to facilitate subsequent discussion of quantum calculations based in finite dimensional Hilbert spaces. Chapters which follow address two-state quantum systems (with spin one-half as the primary example), entanglement of multiple two-state systems, quantum angular momentum theory and quantum approaches to statistical mechanics. A concluding chapter gives an overview of issues associated with quantum mechanics in continuous infinite-dimensional Hilbert spaces.
A Modern Approach to Quantum Mechanics
Author: John S. Townsend
Publisher: University Science Books
ISBN: 9781891389139
Category : Science
Languages : en
Pages : 498
Book Description
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.
Publisher: University Science Books
ISBN: 9781891389139
Category : Science
Languages : en
Pages : 498
Book Description
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.
The Racah-Wigner Algebra in Quantum Theory
Author: L C Biedenharn
Publisher:
ISBN: 9781299820654
Category :
Languages : en
Pages :
Book Description
This series of Encyclopedia volumes attempts to present the factual body of all mathematics.
Publisher:
ISBN: 9781299820654
Category :
Languages : en
Pages :
Book Description
This series of Encyclopedia volumes attempts to present the factual body of all mathematics.
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Angular Momentum in Quantum Mechanics
Author: A. R. Edmonds
Publisher: Princeton University Press
ISBN: 1400884187
Category : Science
Languages : en
Pages : 155
Book Description
This book offers a concise introduction to the angular momentum, one of the most fundamental quantities in all of quantum mechanics. Beginning with the quantization of angular momentum, spin angular momentum, and the orbital angular momentum, the author goes on to discuss the Clebsch-Gordan coefficients for a two-component system. After developing the necessary mathematics, specifically spherical tensors and tensor operators, the author then investigates the 3-j, 6-j, and 9-j symbols. Throughout, the author provides practical applications to atomic, molecular, and nuclear physics. These include partial-wave expansions, the emission and absorption of particles, the proton and electron quadrupole moment, matrix element calculation in practice, and the properties of the symmetrical top molecule.
Publisher: Princeton University Press
ISBN: 1400884187
Category : Science
Languages : en
Pages : 155
Book Description
This book offers a concise introduction to the angular momentum, one of the most fundamental quantities in all of quantum mechanics. Beginning with the quantization of angular momentum, spin angular momentum, and the orbital angular momentum, the author goes on to discuss the Clebsch-Gordan coefficients for a two-component system. After developing the necessary mathematics, specifically spherical tensors and tensor operators, the author then investigates the 3-j, 6-j, and 9-j symbols. Throughout, the author provides practical applications to atomic, molecular, and nuclear physics. These include partial-wave expansions, the emission and absorption of particles, the proton and electron quadrupole moment, matrix element calculation in practice, and the properties of the symmetrical top molecule.