Analytical Approaches for Reinforced Concrete PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Analytical Approaches for Reinforced Concrete PDF full book. Access full book title Analytical Approaches for Reinforced Concrete by Yufei Wu. Download full books in PDF and EPUB format.

Analytical Approaches for Reinforced Concrete

Analytical Approaches for Reinforced Concrete PDF Author: Yufei Wu
Publisher: Woodhead Publishing
ISBN: 0128232013
Category : Architecture
Languages : en
Pages : 556

Book Description
Analytical Approaches for Reinforced Concrete presents mathematically-derived theories and equations for RC design and construction. The book applies deductive reasoning, logic and mathematics to RC. Laying out, deductively, the principles of RC, it encourages researchers to re-imagine and innovate using a solid conceptual framework. Sections consider the reasoning behind key theories, as well as problems that remain unsolved. The title presents key ideas in simple language and illustrates them clearly to help the reader grasp difficult concepts and develop a solid foundation, grounded in mathematics, for further study and research. The book is future-oriented, demonstrating theories that are applicable not only to conventional reinforced concrete members, but also to the envisaged structures of tomorrow. Such developments will increasingly require a deep, deductive understanding of RC. This title is the first of its kind, presenting a fresh analytical approach to reinforced concrete design and construction. Takes an analytical approach to reinforced concrete using mathematics and deduction Lays out the reasoning behind key theories and models in reinforced concrete design and construction Encourages researchers-new and established- to re-imagine and innovate using a solid conceptual framework Presents difficult concepts that are clearly and analytically presented with accompanying illustrations Looks forward to the use of reinforced concrete in the complex structures of the future

Analytical Approaches for Reinforced Concrete

Analytical Approaches for Reinforced Concrete PDF Author: Yufei Wu
Publisher: Woodhead Publishing
ISBN: 0128232013
Category : Architecture
Languages : en
Pages : 556

Book Description
Analytical Approaches for Reinforced Concrete presents mathematically-derived theories and equations for RC design and construction. The book applies deductive reasoning, logic and mathematics to RC. Laying out, deductively, the principles of RC, it encourages researchers to re-imagine and innovate using a solid conceptual framework. Sections consider the reasoning behind key theories, as well as problems that remain unsolved. The title presents key ideas in simple language and illustrates them clearly to help the reader grasp difficult concepts and develop a solid foundation, grounded in mathematics, for further study and research. The book is future-oriented, demonstrating theories that are applicable not only to conventional reinforced concrete members, but also to the envisaged structures of tomorrow. Such developments will increasingly require a deep, deductive understanding of RC. This title is the first of its kind, presenting a fresh analytical approach to reinforced concrete design and construction. Takes an analytical approach to reinforced concrete using mathematics and deduction Lays out the reasoning behind key theories and models in reinforced concrete design and construction Encourages researchers-new and established- to re-imagine and innovate using a solid conceptual framework Presents difficult concepts that are clearly and analytically presented with accompanying illustrations Looks forward to the use of reinforced concrete in the complex structures of the future

Handbook of Analytical Techniques in Concrete Science and Technology

Handbook of Analytical Techniques in Concrete Science and Technology PDF Author: V.S. Ramachandran
Publisher: William Andrew
ISBN:
Category : Science
Languages : en
Pages : 1010

Book Description
A complete reference to the cutting edge procedures used to test today's materials and details measuring techniques for the long term durability of new types of concrete and concrete technologies, with contributions by 24 leading scientists and chapters that cover chemical and thermal analysis.

Nonlinear Time Dependent Design and Analysis of Slender Reinforced Concrete Columns

Nonlinear Time Dependent Design and Analysis of Slender Reinforced Concrete Columns PDF Author: Ka-Wai Lee
Publisher: Cuvillier Verlag
ISBN: 3865370497
Category :
Languages : en
Pages : 222

Book Description


Design of Reinforced Concrete Buildings for Seismic Performance

Design of Reinforced Concrete Buildings for Seismic Performance PDF Author: Mark Aschheim
Publisher: CRC Press
ISBN: 148226692X
Category : Technology & Engineering
Languages : en
Pages : 576

Book Description
The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.

Reinforced Concrete Structures: Analysis and Design

Reinforced Concrete Structures: Analysis and Design PDF Author: David D. E. E. Fanella
Publisher: McGraw Hill Professional
ISBN: 0071638350
Category : Technology & Engineering
Languages : en
Pages : 652

Book Description
A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations

Reinforced Concrete Beams, Columns and Frames

Reinforced Concrete Beams, Columns and Frames PDF Author: Jostein Hellesland
Publisher: John Wiley & Sons
ISBN: 1118635329
Category : Science
Languages : en
Pages : 224

Book Description
This book is focused on the theoretical and practical design of reinforced concrete beams, columns and frame structures. It is based on an analytical approach of designing normal reinforced concrete structural elements that are compatible with most international design rules, including for instance the European design rules – Eurocode 2 – for reinforced concrete structures. The book tries to distinguish between what belongs to the structural design philosophy of such structural elements (related to strength of materials arguments) and what belongs to the design rule aspects associated with specific characteristic data (for the material or loading parameters). A previous book, entitled Reinforced Concrete Beams, Columns and Frames – Mechanics and Design, deals with the fundamental aspects of the mechanics and design of reinforced concrete in general, both related to the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS), whereas the current book deals with more advanced ULS aspects, along with instability and second-order analysis aspects. Some recent research results including the use of non-local mechanics are also presented. This book is aimed at Masters-level students, engineers, researchers and teachers in the field of reinforced concrete design. Most of the books in this area are very practical or code-oriented, whereas this book is more theoretically based, using rigorous mathematics and mechanics tools. Contents 1. Advanced Design at Ultimate Limit State (ULS). 2. Slender Compression Members – Mechanics and Design. 3. Approximate Analysis Methods. Appendix 1. Cardano’s Method. Appendix 2. Steel Reinforcement Table. About the Authors Jostein Hellesland has been Professor of Structural Mechanics at the University of Oslo, Norway since January 1988. His contribution to the field of stability has been recognized and magnified by many high-quality papers in famous international journals such as Engineering Structures, Thin-Walled Structures, Journal of Constructional Steel Research and Journal of Structural Engineering. Noël Challamel is Professor in Civil Engineering at UBS, University of South Brittany in France and chairman of the EMI-ASCE Stability committee. His contributions mainly concern the dynamics, stability and inelastic behavior of structural components, with special emphasis on Continuum Damage Mechanics (more than 70 publications in International peer-reviewed journals). Charles Casandjian was formerly Associate Professor at INSA (French National Institute of Applied Sciences), Rennes, France and the chairman of the course on reinforced concrete design. He has published work on the mechanics of concrete and is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Christophe Lanos is Professor in Civil Engineering at the University of Rennes 1 in France. He has mainly published work on the mechanics of concrete, as well as other related subjects. He is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX.

Limit Analysis of Reinforced Concrete Slabs

Limit Analysis of Reinforced Concrete Slabs PDF Author: Joost Meyboom
Publisher: vdf Hochschulverlag AG
ISBN: 9783728128768
Category : Technology & Engineering
Languages : en
Pages : 128

Book Description


Analytical Methods for the Optimum Design of Reinforced Concrete Slab and Beam Structures

Analytical Methods for the Optimum Design of Reinforced Concrete Slab and Beam Structures PDF Author: Robert Skelton
Publisher:
ISBN:
Category : Concrete beams
Languages : en
Pages : 576

Book Description


Reinforced Concrete Design

Reinforced Concrete Design PDF Author: Svetlana Brzev
Publisher:
ISBN: 9781256873846
Category : Technology & Engineering
Languages : en
Pages : 966

Book Description
Reinforced Concrete Design: A Practical Approach, 2E is the only Canadian textbook which covers the design of reinforced concrete structural members in accordance with the CSA Standard A23.3-04 Design of Concrete Structures, including its 2005, 2007, and 2009 amendments, and the National Building Code of Canada 2010. Reinforced Concrete Design: A Practical Approach covers key topics for curriculum of undergraduate reinforced concrete design courses, and it is a useful learning resource for the students and a practical reference for design engineers. Since its original release in 2005 the book has been well received by readers from Canadian universities, colleges, and design offices. The authors have been commended for a simple and practical approach to the subject by students and course instructors. The book contains numerous design examples solved in a step-by-step format. The second edition is going to be available exclusively in hard cover version, and colours have been used to embellish the content and illustrations. This edition contains a new chapter on the design of two-way slabs and numerous revisions of the original manuscript. Design of two-way slabs is a challenging topic for engineering students and young engineers. The authors have made an effort to give a practical design perspective to this topic, and have focused on analysis and design approaches that are widely used in structural engineering practice. The topics include design of two-way slabs for flexure, shear, and deflection control. Comprehensive revisions were made to Chapter 4 to reflect the changes contained in the 2009 amendment to CSA A23.3-04. Chapters 6 and 7 have been revised to correct an oversight related to the transverse reinforcement spacing requirements in the previous edition of the book. Chapter 8 includes a new design example on slender columns and a few additional problems. Several errors and omissions (both text and illustrations) have also been corrected. More than 300 pages of the original book have been revised in this edition. Several supplements are included on the book web site. Readers will get time-limited access to the new column design software BPA COLUMN, which can generate column interaction diagrams for rectangular and cicrcular columns of variable dimensions and reinforcement amount. Additional supplements include spreadsheets related to foundation design and column load take down, and a few Power Point presentations showcasing reinforced concrete structures under construction and in completed form. Instructors will have an access to additional web site, which contains electronic version of the Instructor's Solution Manual with complete solutions to the end-of-chapter problems, and Power Point presentations containing all illustrations from the book. The book is a collaborative effort between an academic and a practising engineer and reflects their unique perspectives on the subject. Svetlana Brzev, Ph.D., P.Eng. is a faculty at the Civil Engineering Department of the British Columbia Institute of Technology, Burnaby, BC. She has over 25 years of combined teaching, research, and consulting experience related to structural design and rehabilitation of concrete and masonry structures, including buildings, municipal, and industrial facilities. John Pao, MEng, PEng, Struct.Eng, is the President of Bogdonov Pao Associates Ltd. of Vancouver, BC, and BPA Group of Companies with offices in Seattle and Los Angeles. Mr. Pao has extensive consulting experience related to design of reinforced concrete buildings, including high-rise residential and office buildings, shopping centers, parking garages, and institutional buildings.

Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures

Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures PDF Author: Carlo Pellegrino
Publisher: Springer
ISBN: 940177336X
Category : Technology & Engineering
Languages : en
Pages : 406

Book Description
This book analyses the current knowledge on structural behaviour of RC elements and structures strengthened with composite materials (experimental, analytical and numerical approaches for EBR and NSM), particularly in relation to the above topics, and the comparison of the predictions of the current available codes/recommendations/guidelines with selected experimental results. The book shows possible critical issues (discrepancies, lacunae, relevant parameters, test procedures, etc.) related to current code predictions or to evaluate their reliability, in order to develop more uniform methods and basic rules for design and control of FRP strengthened RC structures. General problems/critical issues are clarified on the basis of the actual experiences, detect discrepancies in existing codes, lacunae in knowledge and, concerning these identified subjects, provide proposals for improvements. The book will help to contribute to promote and consolidate a more qualified and conscious approach towards rehabilitation and strengthening existing RC structures with composites and their possible monitoring.