Analysis of Hydraulic Fracture Growth and Segmentation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Analysis of Hydraulic Fracture Growth and Segmentation PDF full book. Access full book title Analysis of Hydraulic Fracture Growth and Segmentation by Bethany Grace Rysak. Download full books in PDF and EPUB format.

Analysis of Hydraulic Fracture Growth and Segmentation

Analysis of Hydraulic Fracture Growth and Segmentation PDF Author: Bethany Grace Rysak
Publisher:
ISBN:
Category :
Languages : en
Pages : 274

Book Description
The 6TW slant core is part of the multidisciplinary Hydraulic Fracture Test Site (HFTS1) project in the Midland Basin. The slant core made a close pass by two horizontal wells on an 11-well pad and has yielded new insight into fracture networks created by the hydraulic fracturing process. Approximately ~600 ft of core was recovered through the Wolfcamp A and B, with fracture characterization identifying 375 hydraulic fractures (trending E-W), and 309 calcite-sealed natural fractures (Set 1 trending NE-SW; Set 2 trending WNW-ESE). Initial observations showed that the number of hydraulic fractures found in core was higher than the number estimated to have been created via the completion processes. This abundance may be closely tied to the examples of twist-hackle segmentation, diversion, and bifurcation seen in core. These features can be used to determine propagation direction and help build a clearer picture of fracture network growth and geometry. To further investigate the impact of these features on our current understanding of hydraulic fracture propagation, this research was divided into four parts, those being: 1) Analysis of hydraulic fractures in the slant core, 2) Observation of lab-generated hydraulic fracture morphology, 3) Observation of natural hydraulic fracture morphology in the field, and 4) Building of a 3D reservoir model for the HFTS1 pad to run fracture forward modeling. The key implications of this work provide a greater understanding of hydraulic fracture network propagation in the subsurface, and could have wider applications for evaluation, completion, production, and fracture modeling techniques in unconventional reservoirs

Analysis of Hydraulic Fracture Growth and Segmentation

Analysis of Hydraulic Fracture Growth and Segmentation PDF Author: Bethany Grace Rysak
Publisher:
ISBN:
Category :
Languages : en
Pages : 274

Book Description
The 6TW slant core is part of the multidisciplinary Hydraulic Fracture Test Site (HFTS1) project in the Midland Basin. The slant core made a close pass by two horizontal wells on an 11-well pad and has yielded new insight into fracture networks created by the hydraulic fracturing process. Approximately ~600 ft of core was recovered through the Wolfcamp A and B, with fracture characterization identifying 375 hydraulic fractures (trending E-W), and 309 calcite-sealed natural fractures (Set 1 trending NE-SW; Set 2 trending WNW-ESE). Initial observations showed that the number of hydraulic fractures found in core was higher than the number estimated to have been created via the completion processes. This abundance may be closely tied to the examples of twist-hackle segmentation, diversion, and bifurcation seen in core. These features can be used to determine propagation direction and help build a clearer picture of fracture network growth and geometry. To further investigate the impact of these features on our current understanding of hydraulic fracture propagation, this research was divided into four parts, those being: 1) Analysis of hydraulic fractures in the slant core, 2) Observation of lab-generated hydraulic fracture morphology, 3) Observation of natural hydraulic fracture morphology in the field, and 4) Building of a 3D reservoir model for the HFTS1 pad to run fracture forward modeling. The key implications of this work provide a greater understanding of hydraulic fracture network propagation in the subsurface, and could have wider applications for evaluation, completion, production, and fracture modeling techniques in unconventional reservoirs

Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs

Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs PDF Author: Arash Dahi Taleghani
Publisher:
ISBN:
Category : Gas reservoirs
Languages : en
Pages : 0

Book Description
Large volumes of natural gas exist in tight fissured reservoirs. Hydraulic fracturing is one of the main stimulating techniques to enhance recovery from these fractured reservoirs. Although hydraulic fracturing has been used for decades for the stimulation of tight gas reservoirs, a thorough understanding of the interaction between induced hydraulic fractures and natural fractures is still lacking. Recent examples of hydraulic fracture diagnostic data suggest complex, multi-stranded hydraulic fracture geometry is a common occurrence. The interaction between pre-existing natural fractures and the advancing hydraulic fracture is a key condition leading to complex fracture patterns. Large populations of natural fractures that exist in formations such as the Barnett shale are sealed by precipitated cements which could be quartz, calcite, etc. Even though there is no porosity in the sealed fractures, they may still serve as weak paths for fracture initiation and/or for diverting the path of the growing hydraulic fractures. Performing hydraulic fracture design calculations under these complex conditions requires modeling of fracture intersections and tracking fluid fronts in the network of reactivated fissures. In this dissertation, the effect of the cohesiveness of the sealed natural fractures and the intact rock toughness in hydraulic fracturing are studied. Accordingly, the role of the pre-existing fracture geometry is also investigated. The results provide some explanations for significant differences in hydraulic fracturing in naturally fractured reservoirs from non-fractured reservoirs. For the purpose of this research, an extended finite element method (XFEM) code is developed to simulate fracture propagation, initiation and intersection. The motivation behind applying XFEM are the desire to avoid remeshing in each step of the fracture propagation, being able to consider arbitrary varying geometry of natural fractures and the insensitivity of fracture propagation to mesh geometry. New modifications are introduced into XFEM to improve stress intensity factor calculations, including fracture intersection criteria into the model and improving accuracy of the solution in near crack tip regions. The presented coupled fluid flow-fracture mechanics simulations extend available modeling efforts and provide a unified framework for evaluating fracture design parameters and their consequences. Results demonstrate that fracture pattern complexity is strongly controlled by the magnitude of in situ stress anisotropy, the rock toughness, the natural fracture cement strength, and the approach angle of the hydraulic fracture to the natural fracture. Previous studies (mostly based on frictional fault stability analysis) have concentrated on predicting the onset of natural fracture failure. However, the use of fracture mechanics and XFEM makes it possible to evaluate the progression of fracture growth over time as fluid is diverted into the natural fractures. Analysis shows that the growing hydraulic fracture may exert enough tensile and/or shear stresses on cemented natural fractures that they may be opened or slip in advance of hydraulic fracture tip arrival, while under some conditions, natural fractures will be unaffected by the hydraulic fracture. A threshold is defined for the fracture energy of cements where, for cases below this threshold, hydraulic fractures divert into the natural fractures. The value of this threshold is calculated for different fracture set orientations. Finally, detailed pressure profile and aperture distributions at the intersection between fracture segments show the potential for difficulty in proppant transport under complex fracture propagation conditions. Whether a hydraulic fracture crosses or is arrested by a pre-existing natural fracture is controlled by shear strength and potential slippage at the fracture intersections, as well as potential debonding of sealed cracks in the near-tip region of a propagating hydraulic fracture. We introduce a new more general criterion for fracture propagation at the intersections. We present a complex hydraulic fracture pattern propagation model based on the Extended Finite Element Method as a design tool that can be used to optimize treatment parameters under complex propagation conditions.

Experiments and Analysis on Hydraulic Fracture Growth in an Interface Separation Apparatus

Experiments and Analysis on Hydraulic Fracture Growth in an Interface Separation Apparatus PDF Author: Donald Edward Johnson
Publisher:
ISBN:
Category :
Languages : en
Pages : 322

Book Description


Some Fundamental Mechanisms of Hydraulic Fracturing

Some Fundamental Mechanisms of Hydraulic Fracturing PDF Author: Ruiting Wu
Publisher:
ISBN:
Category : Hydraulic fracturing
Languages : en
Pages :

Book Description
This dissertation focuses mainly on three topics: (1) mixed-mode branching and segmentation of hydraulic fractures in brittle materials, (2) hydraulic fracture propagation in particulate materials, and (3) hydraulic fracturing in water flooding conditions. Mixed-mode loading is one of the primary causes of fracture branching and segmentation in brittle materials. We conducted the first laboratory experiments on the mixed mode I+III hydraulic fracturing. We found that a KIII/KI ratio as small as ~1% is sufficient for fracture front segmentation. In reality, such a small mode III component is always expected, for example, due to the small deviations of the fracture shape from planar. Thus, we concluded that fracture segmentation is likely to accompany growth of most, if not all, real hydraulic fractures. We also proposed a theoretical model that captures the main features of experimental observations and indicates the importance of the hydraulic effect of segmentation. Particulate materials often exhibit pronounced non-linear behavior and yielding even at relatively small loads. In order to adequately describe hydraulic fracturing in particulate materials with low or no cohesion, plasticity at the crack tip must be explicitly considered. We investigated the shear band mechanism of strain localization at the fracture front. This mechanism takes into account the fact that cohesionless material can not bear tension, and is in compression everywhere, including near the fracture front. To verify the shear band hypothesis, we conducted numerical simulations of the plastic deformation at the tip of a fracture in particulate material with strain softening. Our model describes the shear bands by properly placed and oriented dislocations. The model results are consistent with experimental observations. Water flooding, which in certain important cases, can result in processes resembly hydraulic fracturing by a low-viscosity fluid with extremely high leak-off. It is difficult to simulate this process in the laboratory. To investigate the fracture initiation mechanism in water flooding conditions, we conducted a numerical simulation of fluid injection into particulate material by using the discrete element code PFC2D. We also considered an analytical model of cavity initiation based on the fluidization mechanism. The estimates given by this model fit remarkably well with the numerical simulation results.

Mechanics of Hydraulic Fracturing

Mechanics of Hydraulic Fracturing PDF Author: Xi Zhang
Publisher: John Wiley & Sons
ISBN: 1119742455
Category : Technology & Engineering
Languages : en
Pages : 291

Book Description
Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.

Hydraulic Fracture Modeling

Hydraulic Fracture Modeling PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Category : Technology & Engineering
Languages : en
Pages : 568

Book Description
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs

Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs PDF Author: Kan Wu
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Successful creations of multiple hydraulic fractures in horizontal wells are critical for economic development of unconventional reservoirs. The recent advances in diagnostic techniques suggest that multi-fracturing stimulation in unconventional reservoirs has often caused complex fracture geometry. The most important factors that might be responsible for the fracture complexity are fracture interaction and the intersection of the hydraulic and natural fracture. The complexity of fracture geometry results in significant uncertainty in fracturing treatment designs and production optimization. Modeling complex fracture propagation can provide a vital link between fracture geometry and stimulation treatments and play a significant role in economically developing unconventional reservoirs. In this research, a novel fracture propagation model was developed to simulate complex hydraulic fracture propagation in unconventional reservoirs. The model coupled rock deformation with fluid flow in the fractures and the horizontal wellbore. A Simplified Three Dimensional Displacement Discontinuity Method (S3D DDM) was proposed to describe rock deformation, calculating fracture opening and shearing as well as fracture interaction. This simplified 3D method is much more accurate than faster pseudo-3D methods for describing multiple fracture propagation but requires significantly less computational effort than fully three-dimensional methods. The mechanical interaction can enhance opening or induce closing of certain crack elements or non-planar propagation. Fluid flow in the fracture and the associated pressure drop were based on the lubrication theory. Fluid flow in the horizontal wellbore was treated as an electrical circuit network to compute the partition of flow rate between multiple fractures and maintain pressure compatibility between the horizontal wellbore and multiple fractures. Iteratively and fully coupled procedures were employed to couple rock deformation and fluid flow by the Newton-Raphson method and the Picard iteration method. The numerical model was applied to understand physical mechanisms of complex fracture geometry and offer insights for operators to design fracturing treatments and optimize the production. Modeling results suggested that non-planar fracture geometry could be generated by an initial fracture with an angle deviating from the direction of the maximum horizontal stress, or by multiple fracture propagation in closed spacing. Stress shadow effects are induced by opening fractures and affect multiple fracture propagation. For closely spaced multiple fractures growing simultaneously, width of the interior fractures are usually significantly restricted, and length of the exterior fractures are much longer than that of the interior fractures. The exterior fractures receive most of fluid and dominate propagation, resulting in immature development of the interior fractures. Natural fractures could further complicate fracture geometry. When a hydraulic fracture encounters a natural fracture and propagates along the pre-existing path of the natural fracture, fracture width on the natural fracture segment will be restricted and injection pressure will increase, as a result of stress shadow effects from hydraulic fracture segments and additional closing stresses from in-situ stress field. When multiple fractures propagate in naturally fracture reservoirs, complex fracture networks could be induced, which are affected by perforation cluster spacing, differential stress and natural fracture patterns. Combination of our numerical model and diagnostic methods (e.g. Microseismicity, DTS and DAS) is an effective approach to accurately characterize the complex fracture geometry. Furthermore, the physics-based complex fracture geometry provided by our model can be imported into reservoir simulation models for production analysis.

Porous Rock Fracture Mechanics

Porous Rock Fracture Mechanics PDF Author: Amir Shojaei
Publisher: Woodhead Publishing
ISBN: 0081007825
Category : Technology & Engineering
Languages : en
Pages : 337

Book Description
Porous Rock Failure Mechanics: Hydraulic Fracturing, Drilling and Structural Engineering focuses on the fracture mechanics of porous rocks and modern simulation techniques for progressive quasi-static and dynamic fractures. The topics covered in this volume include a wide range of academic and industrial applications, including petroleum, mining, and civil engineering. Chapters focus on advanced topics in the field of rock’s fracture mechanics and address theoretical concepts, experimental characterization, numerical simulation techniques, and their applications as appropriate. Each chapter reflects the current state-of-the-art in terms of the modern use of fracture simulation in industrial and academic sectors. Some of the major contributions in this volume include, but are not limited to: anisotropic elasto-plastic deformation mechanisms in fluid saturated porous rocks, dynamics of fluids transport in fractured rocks and simulation techniques, fracture mechanics and simulation techniques in porous rocks, fluid-structure interaction in hydraulic driven fractures, advanced numerical techniques for simulation of progressive fracture, including multiscale modeling, and micromechanical approaches for porous rocks, and quasi-static versus dynamic fractures in porous rocks. This book will serve as an important resource for petroleum, geomechanics, drilling and structural engineers, R&D managers in industry and academia. Includes a strong editorial team and quality experts as chapter authors Presents topics identified for individual chapters are current, relevant, and interesting Focuses on advanced topics, such as fluid coupled fractures, rock’s continuum damage mechanics, and multiscale modeling Provides a ‘one-stop’ advanced-level reference for a graduate course focusing on rock’s mechanics

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Author: Xinpu Shen
Publisher: CRC Press
ISBN: 1351796291
Category : Science
Languages : en
Pages : 192

Book Description
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Experimental Studies in Hydraulic Fracture Growth

Experimental Studies in Hydraulic Fracture Growth PDF Author: Murtadha Jawad Al Tammar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Novel experimental capabilities to study hydraulic fracturing in the laboratory are developed and utilized in this research. Fracturing experiments are conducted using two-dimensional (2-D) test specimens that are made from synthetic, porous materials with well-characterized properties. Fracture growth during the experiments is captured with clear, high resolution images and subsequent image processing using Digital Image Correlation (DIC) analyses. First, we investigated the problem of a hydraulic fracture induced in a soft layer bounded by harder layers. The experiments reveal a clear tendency for induced fractures to avoid harder bounding layers. This is seen as fracture deflection or kinking away from the harder layers, fracture curving between the harder bounding layers, and fracture tilt from the maximum far-field stress direction. In addition, when a fracture is induced in a relatively thin layer, the fracture avoids the harder bounding layers by initiating and propagating parallel to the bounding interfaces. Fracture propagation parallel to the bounding layers is also observed in relatively wide layers when the far-field stress is isotropic or very low. Complex fracture trajectories are induced in layered specimens when the far-field differential stress is low or intermediate. In a second set of experiments, we used homogeneous specimens with multiple fluid injection ports. It is clearly shown that injection-induced stresses can appreciably affect hydraulic fracture trajectories and fracturing pressures. We show that induced hydraulic fractures, under our laboratory conditions, are attracted to regions of high pore pressure. Induced fractures tend to propagate towards neighboring high pore pressure injection ports. The recorded breakdown pressure in the fracturing experiments decreases significantly as the number of neighboring injectors increases. The influence of an adjacent fluid injection source on the hydraulic fracture trajectory can be minimized or suppressed when the applied far-field differential stress is relatively high. Preferential fracture growth due to changes in pore pressure in field applications as compared to our laboratory observations is also discussed. In a third set of experiments, we show that the breakdown pressure of test specimens can be reduced markedly with low injection rates, cyclic borehole pressurization, and/or constant pressure injection. This is largely related to the extent of pressurized region around the borehole caused by fluid leakoff in dry specimens and possible specimen weakening by fluid contact. The breakdown pressure can also be reduced by notching the specimen borehole when the injection fluid is allowed to flow and leak off along the borehole notch. In a fourth set of experiments, we compared fracture growth induced by a viscous liquid and a gas which are glycerin and nitrogen, respectively. The experiments show that fractures propagate through test specimens in a gradual manner when induced by glycerin at various injection rates. By contrast, nitrogen injection induces fractures that grow much more rapidly, which we attribute to its compressible nature and ultralow viscosity. The breakdown pressure is also shown to be markedly lower for nitrogen fractures compared to glycerin fractures. Moreover, an experimental evidence of fluid lag when fractures are induced with viscous fluids is demonstrated. Lastly, experiments were conducted to examine the behavior of an induced hydraulic fracture as it approaches a cemented natural fracture. We show a tendency for the induced hydraulic fracture to cross thick natural fractures filled with softer materials than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port is shown to be diverted by a thin, hard natural fracture that is placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. These observations, and numerous others, documented in this dissertation provide fundamental insights on various aspects of hydraulic fracture propagation. Our extensive set of laboratory observations are also very useful in validating numerical hydraulic fracturing simulators due to the small-scale, 2-D nature, and characterized properties of the test specimens used in the experiments