Author: John R. Howell
Publisher:
ISBN:
Category : Energy transfer
Languages : en
Pages : 44
Book Description
An analytical technique suitable for & the solution of complex energy transfer problems involving coupled radiant and convective energy transfer is developed. Solutions for the coupled axial wall energy flax distribution in rocket nozzles using hydrogen as a propellant are presented. Flow rates and temperatures studied are near those forecast for gaseous-core nuclear-propulsion systems. Parameters varied are nozzle shape, inlet propellant temperature, mean reactor cavity temperature, and nozzle wall temperature level. The effects of variation of the propellant radiation absorption coefficient with pressure, temperature, and wavelength are presented, and real property variations are used where they appear to be significant. Comparison is made to a simplified, coupled solution using a modified second-order one-dimensional diffusion equation for the radiative transfer. At the temperature levels assumed, radiative transfer may account for a greater portion of the total energy transfer over important portions of the nozzle, and its effects cannot, therefore, be neglected. Extreme energy flaxes (near 3XlO to the 8 Btu/(hr)(sq ft)) are observed for certain cases, and this implies that new nozzle cooling techniques must be developed.
Analysis of Heat-transfer Effects in Rocket Nozzles Operating with Very High-temperature Hydrogen
Author: John R. Howell
Publisher:
ISBN:
Category : Energy transfer
Languages : en
Pages : 44
Book Description
An analytical technique suitable for & the solution of complex energy transfer problems involving coupled radiant and convective energy transfer is developed. Solutions for the coupled axial wall energy flax distribution in rocket nozzles using hydrogen as a propellant are presented. Flow rates and temperatures studied are near those forecast for gaseous-core nuclear-propulsion systems. Parameters varied are nozzle shape, inlet propellant temperature, mean reactor cavity temperature, and nozzle wall temperature level. The effects of variation of the propellant radiation absorption coefficient with pressure, temperature, and wavelength are presented, and real property variations are used where they appear to be significant. Comparison is made to a simplified, coupled solution using a modified second-order one-dimensional diffusion equation for the radiative transfer. At the temperature levels assumed, radiative transfer may account for a greater portion of the total energy transfer over important portions of the nozzle, and its effects cannot, therefore, be neglected. Extreme energy flaxes (near 3XlO to the 8 Btu/(hr)(sq ft)) are observed for certain cases, and this implies that new nozzle cooling techniques must be developed.
Publisher:
ISBN:
Category : Energy transfer
Languages : en
Pages : 44
Book Description
An analytical technique suitable for & the solution of complex energy transfer problems involving coupled radiant and convective energy transfer is developed. Solutions for the coupled axial wall energy flax distribution in rocket nozzles using hydrogen as a propellant are presented. Flow rates and temperatures studied are near those forecast for gaseous-core nuclear-propulsion systems. Parameters varied are nozzle shape, inlet propellant temperature, mean reactor cavity temperature, and nozzle wall temperature level. The effects of variation of the propellant radiation absorption coefficient with pressure, temperature, and wavelength are presented, and real property variations are used where they appear to be significant. Comparison is made to a simplified, coupled solution using a modified second-order one-dimensional diffusion equation for the radiative transfer. At the temperature levels assumed, radiative transfer may account for a greater portion of the total energy transfer over important portions of the nozzle, and its effects cannot, therefore, be neglected. Extreme energy flaxes (near 3XlO to the 8 Btu/(hr)(sq ft)) are observed for certain cases, and this implies that new nozzle cooling techniques must be developed.
NASA Technical Report
Scientific and Technical Aerospace Reports
NASA Technical Note
Government-wide Index to Federal Research & Development Reports
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1080
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1080
Book Description
Thermal Radiation Heat Transfer: Radiation transfer with absorbing, emitting, and scattering media
Advances in Heat Transfer
Author:
Publisher: Academic Press
ISBN: 0080575595
Category : Science
Languages : en
Pages : 551
Book Description
Advances in Heat Transfer
Publisher: Academic Press
ISBN: 0080575595
Category : Science
Languages : en
Pages : 551
Book Description
Advances in Heat Transfer
Monthly Catalog of United States Government Publications, Cumulative Index
Author: United States. Superintendent of Documents
Publisher:
ISBN:
Category : United States
Languages : en
Pages : 1250
Book Description
Publisher:
ISBN:
Category : United States
Languages : en
Pages : 1250
Book Description
Monthly Catalog of United States Government Publications
Author: United States. Superintendent of Documents
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1320
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1320
Book Description
Measurements in Heat Transfer
Author: Ernst R. G. Eckert
Publisher: Taylor & Francis
ISBN: 9780891166528
Category : Science
Languages : en
Pages : 388
Book Description
Publisher: Taylor & Francis
ISBN: 9780891166528
Category : Science
Languages : en
Pages : 388
Book Description