Author: Mariano Giaquinta
Publisher: Springer Science & Business Media
ISBN: 1461200075
Category : Mathematics
Languages : en
Pages : 364
Book Description
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941.
Mathematical Analysis
Author: Mariano Giaquinta
Publisher: Springer Science & Business Media
ISBN: 1461200075
Category : Mathematics
Languages : en
Pages : 364
Book Description
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941.
Publisher: Springer Science & Business Media
ISBN: 1461200075
Category : Mathematics
Languages : en
Pages : 364
Book Description
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941.
Fundamentals of Mathematical Analysis
Author: Adel N. Boules
Publisher: Oxford University Press, USA
ISBN: 0198868782
Category : Mathematics
Languages : en
Pages : 481
Book Description
Fundamentals of Mathematical Analysis explores real and functional analysis with a substantial component on topology. The three leading chapters furnish background information on the real and complex number fields, a concise introduction to set theory, and a rigorous treatment of vector spaces. Fundamentals of Mathematical Analysis is an extensive study of metric spaces, including the core topics of completeness, compactness and function spaces, with a good number of applications. The later chapters consist of an introduction to general topology, a classical treatment of Banach and Hilbert spaces, the elements of operator theory, and a deep account of measure and integration theories. Several courses can be based on the book. This book is suitable for a two-semester course on analysis, and material can be chosen to design one-semester courses on topology or real analysis. It is designed as an accessible classical introduction to the subject and aims to achieve excellent breadth and depth and contains an abundance of examples and exercises. The topics are carefully sequenced, the proofs are detailed, and the writing style is clear and concise. The only prerequisites assumed are a thorough understanding of undergraduate real analysis and linear algebra, and a degree of mathematical maturity.
Publisher: Oxford University Press, USA
ISBN: 0198868782
Category : Mathematics
Languages : en
Pages : 481
Book Description
Fundamentals of Mathematical Analysis explores real and functional analysis with a substantial component on topology. The three leading chapters furnish background information on the real and complex number fields, a concise introduction to set theory, and a rigorous treatment of vector spaces. Fundamentals of Mathematical Analysis is an extensive study of metric spaces, including the core topics of completeness, compactness and function spaces, with a good number of applications. The later chapters consist of an introduction to general topology, a classical treatment of Banach and Hilbert spaces, the elements of operator theory, and a deep account of measure and integration theories. Several courses can be based on the book. This book is suitable for a two-semester course on analysis, and material can be chosen to design one-semester courses on topology or real analysis. It is designed as an accessible classical introduction to the subject and aims to achieve excellent breadth and depth and contains an abundance of examples and exercises. The topics are carefully sequenced, the proofs are detailed, and the writing style is clear and concise. The only prerequisites assumed are a thorough understanding of undergraduate real analysis and linear algebra, and a degree of mathematical maturity.
Mathematical Analysis
Author: L. A. Lyusternik
Publisher: Elsevier
ISBN: 1483194361
Category : Mathematics
Languages : en
Pages : 419
Book Description
Mathematical Analysis: Functions, Limits, Series, Continued Fractions provides an introduction to the differential and integral calculus. This book presents the general problems of the theory of continuous functions of one and several variables, as well as the theory of limiting values for sequences of numbers and vectors. Organized into six chapters, this book begins with an overview of real numbers, the arithmetic linear continuum, limiting values, and functions of one variable. This text then presents the theory of series and practical methods of summation. Other chapters consider the theory of numerical series and series of functions and other analogous processes, particularly infinite continued fractions. This book discusses as well the general problems of the reduction of functions to orthogonal series. The final chapter deals with constants and the most important systems of numbers, including Bernoulli and Euler numbers. This book is a valuable resource for mathematicians, engineers, and research workers.
Publisher: Elsevier
ISBN: 1483194361
Category : Mathematics
Languages : en
Pages : 419
Book Description
Mathematical Analysis: Functions, Limits, Series, Continued Fractions provides an introduction to the differential and integral calculus. This book presents the general problems of the theory of continuous functions of one and several variables, as well as the theory of limiting values for sequences of numbers and vectors. Organized into six chapters, this book begins with an overview of real numbers, the arithmetic linear continuum, limiting values, and functions of one variable. This text then presents the theory of series and practical methods of summation. Other chapters consider the theory of numerical series and series of functions and other analogous processes, particularly infinite continued fractions. This book discusses as well the general problems of the reduction of functions to orthogonal series. The final chapter deals with constants and the most important systems of numbers, including Bernoulli and Euler numbers. This book is a valuable resource for mathematicians, engineers, and research workers.
A Course in Mathematical Analysis
Author: Edouard Goursat
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 309
Book Description
Publisher:
ISBN:
Category : Calculus
Languages : en
Pages : 309
Book Description
Journal D'analyse Mathématique
Analyse mathématique et applications
Author: Shmuel Agmon
Publisher: Bordas Editions
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 528
Book Description
Publisher: Bordas Editions
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 528
Book Description
Mathematical Analysis and Numerical Methods for Science and Technology
Author: Robert Dautray
Publisher: Springer Science & Business Media
ISBN: 9783540660972
Category : Mathematics
Languages : en
Pages : 748
Book Description
These 6 volumes -- the result of a 10 year collaboration between the authors, both distinguished international figures -- compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. The advent of high-speed computers has made it possible to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way.
Publisher: Springer Science & Business Media
ISBN: 9783540660972
Category : Mathematics
Languages : en
Pages : 748
Book Description
These 6 volumes -- the result of a 10 year collaboration between the authors, both distinguished international figures -- compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. The advent of high-speed computers has made it possible to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way.
A Course in Mathematical Analysis Volume 3
Author: Edouard Goursat
Publisher: Courier Corporation
ISBN: 0486446522
Category : Mathematics
Languages : en
Pages : 756
Book Description
Classic three-volume study. Volume 1 covers applications to geometry, expansion in series, definite integrals, and derivatives and differentials. Volume 2 explores functions of a complex variable and differential equations. Volume 3 surveys variations of solutions and partial differential equations of the second order and integral equations and calculus of variations.
Publisher: Courier Corporation
ISBN: 0486446522
Category : Mathematics
Languages : en
Pages : 756
Book Description
Classic three-volume study. Volume 1 covers applications to geometry, expansion in series, definite integrals, and derivatives and differentials. Volume 2 explores functions of a complex variable and differential equations. Volume 3 surveys variations of solutions and partial differential equations of the second order and integral equations and calculus of variations.
Mathematical Analysis, Probability and Applications – Plenary Lectures
Author: Tao Qian
Publisher: Springer
ISBN: 3319419455
Category : Mathematics
Languages : en
Pages : 335
Book Description
This book collects lectures given by the plenary speakers at the 10th International ISAAC Congress, held in Macau, China in 2015. The contributions, authored by eminent specialists, present some of the most exciting recent developments in mathematical analysis, probability theory, and related applications. Topics include: partial differential equations in mathematical physics, Fourier analysis, probability and Brownian motion, numerical analysis, and reproducing kernels. The volume also presents a lecture on the visual exploration of complex functions using the domain coloring technique. Thanks to the accessible style used, readers only need a basic command of calculus.
Publisher: Springer
ISBN: 3319419455
Category : Mathematics
Languages : en
Pages : 335
Book Description
This book collects lectures given by the plenary speakers at the 10th International ISAAC Congress, held in Macau, China in 2015. The contributions, authored by eminent specialists, present some of the most exciting recent developments in mathematical analysis, probability theory, and related applications. Topics include: partial differential equations in mathematical physics, Fourier analysis, probability and Brownian motion, numerical analysis, and reproducing kernels. The volume also presents a lecture on the visual exploration of complex functions using the domain coloring technique. Thanks to the accessible style used, readers only need a basic command of calculus.
Advanced Calculus
Author: Patrick Fitzpatrick
Publisher: American Mathematical Soc.
ISBN: 0821847910
Category : Mathematics
Languages : en
Pages : 610
Book Description
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.
Publisher: American Mathematical Soc.
ISBN: 0821847910
Category : Mathematics
Languages : en
Pages : 610
Book Description
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.