Author: Institute for Computer Applications in Science and Engineering
Publisher:
ISBN:
Category :
Languages : en
Pages : 24
Book Description
Analysis of an RNG Based Turbulence Model for Separated Flows
Author: Institute for Computer Applications in Science and Engineering
Publisher:
ISBN:
Category :
Languages : en
Pages : 24
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 24
Book Description
Turbulence Models and Their Application
Author: Tuncer Cebeci
Publisher: Springer Science & Business Media
ISBN: 9783540402886
Category : Science
Languages : en
Pages : 140
Book Description
After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.
Publisher: Springer Science & Business Media
ISBN: 9783540402886
Category : Science
Languages : en
Pages : 140
Book Description
After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.
Scientific and Technical Aerospace Reports
Multiscale and Multiresolution Approaches in Turbulence
Author: Pierre Sagaut
Publisher: World Scientific
ISBN: 1848169876
Category : Science
Languages : en
Pages : 446
Book Description
The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods.
Publisher: World Scientific
ISBN: 1848169876
Category : Science
Languages : en
Pages : 446
Book Description
The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods.
A Realizable Reynolds Stress Algebraic Equation Model
Author: Tsan-Hsing Shih
Publisher:
ISBN:
Category :
Languages : en
Pages : 42
Book Description
The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.
Publisher:
ISBN:
Category :
Languages : en
Pages : 42
Book Description
The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.
Calculations of Turbulent Separated Flows
Monthly Catalogue, United States Public Documents
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 752
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 752
Book Description
Monthly Catalog of United States Government Publications
Turbulent Jets
Author: N. Rajaratnam
Publisher: Elsevier
ISBN: 0080869963
Category : Science
Languages : en
Pages : 315
Book Description
Turbulent Jets
Publisher: Elsevier
ISBN: 0080869963
Category : Science
Languages : en
Pages : 315
Book Description
Turbulent Jets
Separated Flows, 1993
Author: Jonathan Craig Dutton
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 232
Book Description