An Investigation of the Effect of Water Injection Into the Cylinder of a Two Cycle Hot Ball Kerosene Engine PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Investigation of the Effect of Water Injection Into the Cylinder of a Two Cycle Hot Ball Kerosene Engine PDF full book. Access full book title An Investigation of the Effect of Water Injection Into the Cylinder of a Two Cycle Hot Ball Kerosene Engine by Clarence Edward Pennell. Download full books in PDF and EPUB format.

An Investigation of the Effect of Water Injection Into the Cylinder of a Two Cycle Hot Ball Kerosene Engine

An Investigation of the Effect of Water Injection Into the Cylinder of a Two Cycle Hot Ball Kerosene Engine PDF Author: Clarence Edward Pennell
Publisher:
ISBN:
Category :
Languages : en
Pages : 37

Book Description


An Investigation of the Effect of Water Injection Into the Cylinder of a Two Cycle Hot Ball Kerosene Engine

An Investigation of the Effect of Water Injection Into the Cylinder of a Two Cycle Hot Ball Kerosene Engine PDF Author: Clarence Edward Pennell
Publisher:
ISBN:
Category :
Languages : en
Pages : 37

Book Description


An Investigation of the Effect of Water Injection with Kerosene Fuel in an Internal Combustion Engine

An Investigation of the Effect of Water Injection with Kerosene Fuel in an Internal Combustion Engine PDF Author: S. D. Barclay
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


An Investigation of the Effect of Water Injection Upon the Economy of Kerosene as a Fuel in Internal Combustion Engines

An Investigation of the Effect of Water Injection Upon the Economy of Kerosene as a Fuel in Internal Combustion Engines PDF Author: Charles Potter Miller
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


An Investigation of the Economic Value of Water Injection Into the Working Cylinder of an Internal Combustion Engine, Using Kerosene as Fuel

An Investigation of the Economic Value of Water Injection Into the Working Cylinder of an Internal Combustion Engine, Using Kerosene as Fuel PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Book Description


Water Injection and Its Impact on Knock Mitigation in Spark Ignited Engines

Water Injection and Its Impact on Knock Mitigation in Spark Ignited Engines PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Abstract : One of the limiting factors influencing the improvement of engine efficiency in gasoline engines is engine knock. Several techniques including reduced compression ratio, cooled exhaust gas recirculation, using high premium fuels, late intake valve closing have been used to mitigate knock at different operating regimes. Water due to its higher latent heat of vaporization compared to gasoline fuel has been used to reduce the charge temperature and mitigate knock. When water is injected into the intake manifold or into the cylinder, it evaporates by exchanging energy from the surrounding mixture resulting in charge cooling. This allows the engine to be run with advanced spark timing without engine knock resulting in better engine performance. With this motive, the impact of water injection on the combustion characteristics of gasoline direct injection engine was investigated. The research was conducted in three parts. First, an analytical model was developed using the principles of thermodynamics to determine the impact of direct water injection on the cycle efficiency. An ideal thermodynamic cycle with constant volume heat addition was considered for the analysis consisting of air, fuel and water mixture. State properties of the mixture were determined at different points in the thermodynamic cycle and efficiency was calculated. This established a baseline on the amount of water that can be injected into the cylinder and its impact on the overall cycle efficiency. This was followed by spray studies on a spray and combustion vessel that were conducted at engine conditions by varying the ambient conditions to determine the vaporization of water and water methanol sprays. This study gives a comparison of the amount of water that can be vaporized from the thermodynamic model. Experimental studies were conducted on a single cylinder engine with a compression ratio of 10.9:1. Baseline tests without water injection were run using gasoline fuel blended with 10% Ethanol (E10) (Anti-Knock Index = 87.0) injected directly into the cylinder. Impact of water injection was studied by injecting water and blends of water and methanol in the intake manifold at different water fuel ratios within controlled knock limit. Furthermore, injection mechanism was changed to direct water injection and tests were conducted at the same conditions to compare the effect of water injection mechanism on the combustion and knock performance.

A Study of the Effect of Introducing Water Into the Cylinder of Gasoline Engines

A Study of the Effect of Introducing Water Into the Cylinder of Gasoline Engines PDF Author: Joseph Samuel Babush
Publisher:
ISBN:
Category :
Languages : en
Pages : 106

Book Description


An Investigation of the Effects of Water Injection in an Internal Combustion Engine

An Investigation of the Effects of Water Injection in an Internal Combustion Engine PDF Author: Embry D. Faatz
Publisher:
ISBN:
Category :
Languages : en
Pages : 38

Book Description


Scientific American

Scientific American PDF Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 644

Book Description


The Effect of Water Injection on Knock in the Otto Cycle Engine ...

The Effect of Water Injection on Knock in the Otto Cycle Engine ... PDF Author: Linus Albert Scott
Publisher:
ISBN:
Category : Fuel
Languages : en
Pages : 142

Book Description


Experimental Investigation of the Effects of Direct Water Injection Parameters on Engine Performance in a Six-stroke Engine

Experimental Investigation of the Effects of Direct Water Injection Parameters on Engine Performance in a Six-stroke Engine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description