Author: Pramod S. Joag
Publisher: Cambridge University Press
ISBN: 1316870472
Category : Science
Languages : en
Pages : 548
Book Description
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
An Introduction to Vectors, Vector Operators and Vector Analysis
Author: Pramod S. Joag
Publisher: Cambridge University Press
ISBN: 1316870472
Category : Science
Languages : en
Pages : 548
Book Description
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
Publisher: Cambridge University Press
ISBN: 1316870472
Category : Science
Languages : en
Pages : 548
Book Description
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
An Introduction to Vectors, Vector Operators and Vector Analysis
Author: Pramod S. Joag
Publisher: Cambridge University Press
ISBN: 110715443X
Category : Mathematics
Languages : en
Pages : 547
Book Description
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
Publisher: Cambridge University Press
ISBN: 110715443X
Category : Mathematics
Languages : en
Pages : 547
Book Description
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
Vector Analysis
Author: Louis Brand
Publisher: Courier Corporation
ISBN: 048615484X
Category : Mathematics
Languages : en
Pages : 306
Book Description
This text was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into the subjects' manifold applications. 1957 edition. 86 figures.
Publisher: Courier Corporation
ISBN: 048615484X
Category : Mathematics
Languages : en
Pages : 306
Book Description
This text was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into the subjects' manifold applications. 1957 edition. 86 figures.
Vector Analysis for Mathematicians, Scientists and Engineers
Author: S. Simons
Publisher: Elsevier
ISBN: 1483160211
Category : Mathematics
Languages : en
Pages : 201
Book Description
Vector Analysis for Mathematicians, Scientists and Engineers, Second Edition, provides an understanding of the methods of vector algebra and calculus to the extent that the student will readily follow those works which make use of them, and further, will be able to employ them himself in his own branch of science. New concepts and methods introduced are illustrated by examples drawn from fields with which the student is familiar, and a large number of both worked and unworked exercises are provided. The book begins with an introduction to vectors, covering their representation, addition, geometrical applications, and components. Separate chapters discuss the products of vectors; the products of three or four vectors; the differentiation of vectors; gradient, divergence, and curl; line, surface, and volume integrals; theorems of vector integration; and orthogonal curvilinear coordinates. The final chapter presents an application of vector analysis. Answers to odd-numbered exercises are provided as the end of the book.
Publisher: Elsevier
ISBN: 1483160211
Category : Mathematics
Languages : en
Pages : 201
Book Description
Vector Analysis for Mathematicians, Scientists and Engineers, Second Edition, provides an understanding of the methods of vector algebra and calculus to the extent that the student will readily follow those works which make use of them, and further, will be able to employ them himself in his own branch of science. New concepts and methods introduced are illustrated by examples drawn from fields with which the student is familiar, and a large number of both worked and unworked exercises are provided. The book begins with an introduction to vectors, covering their representation, addition, geometrical applications, and components. Separate chapters discuss the products of vectors; the products of three or four vectors; the differentiation of vectors; gradient, divergence, and curl; line, surface, and volume integrals; theorems of vector integration; and orthogonal curvilinear coordinates. The final chapter presents an application of vector analysis. Answers to odd-numbered exercises are provided as the end of the book.
Vector Analysis and Cartesian Tensors
Author: D. E. Bourne
Publisher: Academic Press
ISBN: 1483260704
Category : Mathematics
Languages : en
Pages : 271
Book Description
Vector Analysis and Cartesian Tensors, Second Edition focuses on the processes, methodologies, and approaches involved in vector analysis and Cartesian tensors, including volume integrals, coordinates, curves, and vector functions. The publication first elaborates on rectangular Cartesian coordinates and rotation of axes, scalar and vector algebra, and differential geometry of curves. Discussions focus on differentiation rules, vector functions and their geometrical representation, scalar and vector products, multiplication of a vector by a scalar, and angles between lines through the origin. The text then elaborates on scalar and vector fields and line, surface, and volume integrals, including surface, volume, and repeated integrals, general orthogonal curvilinear coordinates, and vector components in orthogonal curvilinear coordinates. The manuscript ponders on representation theorems for isotropic tensor functions, Cartesian tensors, applications in potential theory, and integral theorems. Topics include geometrical and physical significance of divergence and curl, Poisson's equation in vector form, isotropic scalar functions of symmetrical second order tensors, and diagonalization of second-order symmetrical tensors. The publication is a valuable reference for mathematicians and researchers interested in vector analysis and Cartesian tensors.
Publisher: Academic Press
ISBN: 1483260704
Category : Mathematics
Languages : en
Pages : 271
Book Description
Vector Analysis and Cartesian Tensors, Second Edition focuses on the processes, methodologies, and approaches involved in vector analysis and Cartesian tensors, including volume integrals, coordinates, curves, and vector functions. The publication first elaborates on rectangular Cartesian coordinates and rotation of axes, scalar and vector algebra, and differential geometry of curves. Discussions focus on differentiation rules, vector functions and their geometrical representation, scalar and vector products, multiplication of a vector by a scalar, and angles between lines through the origin. The text then elaborates on scalar and vector fields and line, surface, and volume integrals, including surface, volume, and repeated integrals, general orthogonal curvilinear coordinates, and vector components in orthogonal curvilinear coordinates. The manuscript ponders on representation theorems for isotropic tensor functions, Cartesian tensors, applications in potential theory, and integral theorems. Topics include geometrical and physical significance of divergence and curl, Poisson's equation in vector form, isotropic scalar functions of symmetrical second order tensors, and diagonalization of second-order symmetrical tensors. The publication is a valuable reference for mathematicians and researchers interested in vector analysis and Cartesian tensors.
Introduction to Vector and Tensor Analysis
Author: Robert C. Wrede
Publisher: Courier Corporation
ISBN: 0486137112
Category : Mathematics
Languages : en
Pages : 436
Book Description
Examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, and more. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486137112
Category : Mathematics
Languages : en
Pages : 436
Book Description
Examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, and more. 1963 edition.
Vector Analysis Versus Vector Calculus
Author: Antonio Galbis
Publisher: Springer Science & Business Media
ISBN: 1461422000
Category : Mathematics
Languages : en
Pages : 383
Book Description
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
Publisher: Springer Science & Business Media
ISBN: 1461422000
Category : Mathematics
Languages : en
Pages : 383
Book Description
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
Introduction to Vectors and Tensors
Author: Ray M. Bowen
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224
Book Description
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.
Vector Analysis
Author: Klaus Jänich
Publisher: Springer Science & Business Media
ISBN: 1475734786
Category : Mathematics
Languages : en
Pages : 289
Book Description
This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.
Publisher: Springer Science & Business Media
ISBN: 1475734786
Category : Mathematics
Languages : en
Pages : 289
Book Description
This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.
A Textbook of Vector Analysis
Author: Shanti Narayan | PK Mittal
Publisher: S. Chand Publishing
ISBN: 9788121922432
Category : Mathematics
Languages : en
Pages : 422
Book Description
A Textbook of Vector Analysis
Publisher: S. Chand Publishing
ISBN: 9788121922432
Category : Mathematics
Languages : en
Pages : 422
Book Description
A Textbook of Vector Analysis