Author: Jewgeni H. Dshalalow
Publisher: CRC Press
ISBN: 1420036890
Category : Mathematics
Languages : en
Pages : 583
Book Description
Designed for use in a two-semester course on abstract analysis, REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration illuminates the principle topics that constitute real analysis. Self-contained, with coverage of topology, measure theory, and integration, it offers a thorough elaboration of major theorems, notions, and co
Real Analysis
An Introduction to the Theory of Real Functions
Author: Stanislaw Lojasiewicz
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 248
Book Description
A concise, classical approach to the theory of real functions, set in the topological context of metric spaces. Newly translated by G. H. Lawden of the Univ. of Sussex and expanded from the earlier Polish editions to include remarks on the extension of finitely many additive functions to a measure, construction of a continuous, non-differential function of a general type, the Banach-Vitali theorem, and Stepanov's theorem. Prerequisites are set theory, topology, and calculus.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 248
Book Description
A concise, classical approach to the theory of real functions, set in the topological context of metric spaces. Newly translated by G. H. Lawden of the Univ. of Sussex and expanded from the earlier Polish editions to include remarks on the extension of finitely many additive functions to a measure, construction of a continuous, non-differential function of a general type, the Banach-Vitali theorem, and Stepanov's theorem. Prerequisites are set theory, topology, and calculus.
Intermediate Analysis
Author: John Meigs Hubbell Olmsted
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
Complexity Theory of Real Functions
Author: K. Ko
Publisher: Springer Science & Business Media
ISBN: 1468468022
Category : Computers
Languages : en
Pages : 318
Book Description
Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some times also yield interesting new practical algorithms. A typical exam ple is the application of the ellipsoid algorithm to combinatorial op timization problems (see, for example, Lovasz [1986]). On the other hand, it has a strong influence on many different branches of mathe matics, including combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a construc tive proof which admits a polynomial-time algorithm for the solution. One of the examples is the recent work on algorithmic theory of per mutation groups. In the area of numerical computation, there are also two tradi tionally independent approaches: recursive analysis and numerical analysis.
Publisher: Springer Science & Business Media
ISBN: 1468468022
Category : Computers
Languages : en
Pages : 318
Book Description
Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some times also yield interesting new practical algorithms. A typical exam ple is the application of the ellipsoid algorithm to combinatorial op timization problems (see, for example, Lovasz [1986]). On the other hand, it has a strong influence on many different branches of mathe matics, including combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a construc tive proof which admits a polynomial-time algorithm for the solution. One of the examples is the recent work on algorithmic theory of per mutation groups. In the area of numerical computation, there are also two tradi tionally independent approaches: recursive analysis and numerical analysis.
An Introduction to Complex Function Theory
Author: Bruce P. Palka
Publisher: Springer Science & Business Media
ISBN: 038797427X
Category : Mathematics
Languages : en
Pages : 585
Book Description
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Publisher: Springer Science & Business Media
ISBN: 038797427X
Category : Mathematics
Languages : en
Pages : 585
Book Description
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Functions of a Real Variable
Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 3642593151
Category : Mathematics
Languages : en
Pages : 343
Book Description
This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
Publisher: Springer Science & Business Media
ISBN: 3642593151
Category : Mathematics
Languages : en
Pages : 343
Book Description
This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
Introduction to the Theory of Algebraic Functions of One Variable
Author: Claude Chevalley
Publisher: American Mathematical Soc.
ISBN: 0821815067
Category : Mathematics
Languages : en
Pages : 204
Book Description
Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.
Publisher: American Mathematical Soc.
ISBN: 0821815067
Category : Mathematics
Languages : en
Pages : 204
Book Description
Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.
An Introduction to Ramsey Theory
Author: Matthew Katz
Publisher: American Mathematical Soc.
ISBN: 1470442906
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Gödel incompleteness, and the Paris-Harrington theorem. Quoting from the book, “There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.”
Publisher: American Mathematical Soc.
ISBN: 1470442906
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Gödel incompleteness, and the Paris-Harrington theorem. Quoting from the book, “There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.”
Entire and Meromorphic Functions
Author: Lee A. Rubel
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Real Variables: An Introduction to the Theory of Functions
Author: Karo Maestro
Publisher: Independently Published
ISBN: 9781795627979
Category : Mathematics
Languages : en
Pages : 678
Book Description
This wonderful textbook, written by one of the preeminent teachers and researchers of analysis of the mid-20th century, gives a deep and comprehensive presentation of undergraduate real analysis of one and several variables that is accessible to any student with a good working knowledge of calculus and some experience with proofs, such as can be provided by a non-applied first linear algebra course or discrete mathematics course. The book lies midway in difficulty between the very basic analysis texts i.e. "baby real variables" texts that present a first course in rigorous single variable calculus and hard-edged real variables courses set in abstract metric spaces like Rudin and Pugh. It is also very broad in coverage. The republication of this book for the first time in nearly 50 years will provide an excellent choice for either a course text or self-study in undergraduate analysis.Several aspects of the book's unusual organization and content make it very deserving of low cost republication. Firstly, while it covers just about all the usual topics in any undergraduate analysis text-number systems, functions, limits of functions and sequences of one and several variables in ℝn, continuity, differentiation and integration of functions in ℝ, bounded sequences, metric spaces, basic point set topology, infinite series, power series, convergence tests, improper integrals, partial and total derivatives and multiple integrals- it has a number of unique aspects to the presentation that distinguish it from other textbooks. For example, a number of important concepts of analysis are covered in the starred sections and exercises that are not usually covered in these courses, such as point set topology, Riemann-Steijles integration, vector analysis and differential forms. Another excellent innovation that an entire opening chapter giving a far more detailed axiomatic description of the number systems without explicitly constructing them. While most analysis texts have such an opening section, Olmstead's is longer and more detailed then the ones found in most books with many substantial exercises. Another positive quality of the book is its' unusual midway level of difficulty. Calculus courses today are far weaker than they were when the standard textbooks such as Walter Rudin's Principles of Mathematical Analysis were published. As a result, a number of students beginning analysis today need a bit more foundational training in rigorous calculus before tackling functions in Euclidean spaces and abstract metric spaces. So usually students have to begin with a "baby real variables" text before moving on to analysis on metric spaces. Olmsted does a fine job in his early chapters of presenting the properties of the real numbers and a precise presentation of calculus on the real line. This allows the first half of the text to act as a "baby real variables" book i.e. a bridge between today's calculus courses and hard-edged classical analysis courses on metric spaces. As a result, students will only need one inexpensive text rather than two. Lastly, Olmsted contains "pragmatic" sections that discuss classical, more computational aspects of analysis that would be of great interest to applied mathematics, physics and engineering students. It's clear that Olmsted's book is an extraordinarily versatile textbook for undergraduate analysis courses at all levels. It will make a strong addition to the undergraduate analysis textbook literature and will be immensely useful to students and teachers alike as either a low-priced main textbook or as a supplement.
Publisher: Independently Published
ISBN: 9781795627979
Category : Mathematics
Languages : en
Pages : 678
Book Description
This wonderful textbook, written by one of the preeminent teachers and researchers of analysis of the mid-20th century, gives a deep and comprehensive presentation of undergraduate real analysis of one and several variables that is accessible to any student with a good working knowledge of calculus and some experience with proofs, such as can be provided by a non-applied first linear algebra course or discrete mathematics course. The book lies midway in difficulty between the very basic analysis texts i.e. "baby real variables" texts that present a first course in rigorous single variable calculus and hard-edged real variables courses set in abstract metric spaces like Rudin and Pugh. It is also very broad in coverage. The republication of this book for the first time in nearly 50 years will provide an excellent choice for either a course text or self-study in undergraduate analysis.Several aspects of the book's unusual organization and content make it very deserving of low cost republication. Firstly, while it covers just about all the usual topics in any undergraduate analysis text-number systems, functions, limits of functions and sequences of one and several variables in ℝn, continuity, differentiation and integration of functions in ℝ, bounded sequences, metric spaces, basic point set topology, infinite series, power series, convergence tests, improper integrals, partial and total derivatives and multiple integrals- it has a number of unique aspects to the presentation that distinguish it from other textbooks. For example, a number of important concepts of analysis are covered in the starred sections and exercises that are not usually covered in these courses, such as point set topology, Riemann-Steijles integration, vector analysis and differential forms. Another excellent innovation that an entire opening chapter giving a far more detailed axiomatic description of the number systems without explicitly constructing them. While most analysis texts have such an opening section, Olmstead's is longer and more detailed then the ones found in most books with many substantial exercises. Another positive quality of the book is its' unusual midway level of difficulty. Calculus courses today are far weaker than they were when the standard textbooks such as Walter Rudin's Principles of Mathematical Analysis were published. As a result, a number of students beginning analysis today need a bit more foundational training in rigorous calculus before tackling functions in Euclidean spaces and abstract metric spaces. So usually students have to begin with a "baby real variables" text before moving on to analysis on metric spaces. Olmsted does a fine job in his early chapters of presenting the properties of the real numbers and a precise presentation of calculus on the real line. This allows the first half of the text to act as a "baby real variables" book i.e. a bridge between today's calculus courses and hard-edged classical analysis courses on metric spaces. As a result, students will only need one inexpensive text rather than two. Lastly, Olmsted contains "pragmatic" sections that discuss classical, more computational aspects of analysis that would be of great interest to applied mathematics, physics and engineering students. It's clear that Olmsted's book is an extraordinarily versatile textbook for undergraduate analysis courses at all levels. It will make a strong addition to the undergraduate analysis textbook literature and will be immensely useful to students and teachers alike as either a low-priced main textbook or as a supplement.