Author: Biswajit Banerjee
Publisher: CRC Press
ISBN: 1439841578
Category : Science
Languages : en
Pages : 378
Book Description
Requiring no advanced knowledge of wave propagation, An Introduction to Metamaterials and Waves in Composites focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. The book gives novices a platform from which they can start exploring the subject in more detail. After introducing concepts related to elasticity, acoustics, and electrodynamics in media, the text presents plane wave solutions to the equations that describe elastic, acoustic, and electromagnetic waves. It examines the plane wave expansion of sources as well as scattering from curved interfaces, specifically spheres and cylinders. The author then covers electrodynamic, acoustic, and elastodynamic metamaterials. He also describes examples of transformations, aspects of acoustic cloaking, and applications of pentamode materials to acoustic cloaking. With a focus on periodic composites, the text uses the Bloch-Floquet theorem to find the effective behavior of composites in the quasistatic limit, presents the quasistatic equations of elastodynamic and electromagnetic waves, and investigates Brillouin zones and band gaps in periodic structures. The final chapter discusses wave propagation in smoothly varying layered media, anisotropic density of a periodic layered medium, and quasistatic homogenization of laminates. This book provides a launch pad for research into elastic and acoustic metamaterials. Many of the ideas presented have yet to be realized experimentally—the book encourages readers to explore these ideas and bring them to technological maturity.
An Introduction to Metamaterials and Waves in Composites
Author: Biswajit Banerjee
Publisher: CRC Press
ISBN: 1439841578
Category : Science
Languages : en
Pages : 378
Book Description
Requiring no advanced knowledge of wave propagation, An Introduction to Metamaterials and Waves in Composites focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. The book gives novices a platform from which they can start exploring the subject in more detail. After introducing concepts related to elasticity, acoustics, and electrodynamics in media, the text presents plane wave solutions to the equations that describe elastic, acoustic, and electromagnetic waves. It examines the plane wave expansion of sources as well as scattering from curved interfaces, specifically spheres and cylinders. The author then covers electrodynamic, acoustic, and elastodynamic metamaterials. He also describes examples of transformations, aspects of acoustic cloaking, and applications of pentamode materials to acoustic cloaking. With a focus on periodic composites, the text uses the Bloch-Floquet theorem to find the effective behavior of composites in the quasistatic limit, presents the quasistatic equations of elastodynamic and electromagnetic waves, and investigates Brillouin zones and band gaps in periodic structures. The final chapter discusses wave propagation in smoothly varying layered media, anisotropic density of a periodic layered medium, and quasistatic homogenization of laminates. This book provides a launch pad for research into elastic and acoustic metamaterials. Many of the ideas presented have yet to be realized experimentally—the book encourages readers to explore these ideas and bring them to technological maturity.
Publisher: CRC Press
ISBN: 1439841578
Category : Science
Languages : en
Pages : 378
Book Description
Requiring no advanced knowledge of wave propagation, An Introduction to Metamaterials and Waves in Composites focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. The book gives novices a platform from which they can start exploring the subject in more detail. After introducing concepts related to elasticity, acoustics, and electrodynamics in media, the text presents plane wave solutions to the equations that describe elastic, acoustic, and electromagnetic waves. It examines the plane wave expansion of sources as well as scattering from curved interfaces, specifically spheres and cylinders. The author then covers electrodynamic, acoustic, and elastodynamic metamaterials. He also describes examples of transformations, aspects of acoustic cloaking, and applications of pentamode materials to acoustic cloaking. With a focus on periodic composites, the text uses the Bloch-Floquet theorem to find the effective behavior of composites in the quasistatic limit, presents the quasistatic equations of elastodynamic and electromagnetic waves, and investigates Brillouin zones and band gaps in periodic structures. The final chapter discusses wave propagation in smoothly varying layered media, anisotropic density of a periodic layered medium, and quasistatic homogenization of laminates. This book provides a launch pad for research into elastic and acoustic metamaterials. Many of the ideas presented have yet to be realized experimentally—the book encourages readers to explore these ideas and bring them to technological maturity.
An Introduction to Metamaterials and Waves in Composites
Author: Biswajit Banerjee
Publisher: CRC Press
ISBN: 9780367576967
Category : Metamaterials
Languages : en
Pages : 376
Book Description
Requiring no advanced knowledge of wave propagation, this text focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. It gives novices a platform from which they can start exploring the subject in more detail. With special emphasis on elastic media and acoustics, the book covers elastodynamic, acoustic, and
Publisher: CRC Press
ISBN: 9780367576967
Category : Metamaterials
Languages : en
Pages : 376
Book Description
Requiring no advanced knowledge of wave propagation, this text focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. It gives novices a platform from which they can start exploring the subject in more detail. With special emphasis on elastic media and acoustics, the book covers elastodynamic, acoustic, and
Wave Propagation in Materials and Structures
Author: Srinivasan Gopalakrishnan
Publisher: CRC Press
ISBN: 1315354896
Category : Science
Languages : en
Pages : 861
Book Description
This book focuses on basic and advanced concepts of wave propagation in diverse material systems and structures. Topics are organized in increasing order of complexity for better appreciation of the subject. Additionally, the book provides basic guidelines to design many of the futuristic materials and devices for varied applications. The material in the book also can be used for designing safer and more lightweight structures such as aircraft, bridges, and mechanical and structural components. The main objective of this book is to bring both the introductory and the advanced topics of wave propagation into one text. Such a text is necessary considering the multi-disciplinary nature of the subject. This book is written in a step-by step modular approach wherein the chapters are organized so that the complexity in the subject is slowly introduced with increasing chapter numbers. Text starts by introducing all the fundamental aspects of wave propagations and then moves on to advanced topics on the subject. Every chapter is provided with a number of numerical examples of increasing complexity to bring out the concepts clearly The solution of wave propagation is computationally very intensive and hence two different approaches, namely, the Finite Element method and the Spectral Finite method are introduced and have a strong focus on wave propagation. The book is supplemented by an exhaustive list of references at the end of the book for the benefit of readers.
Publisher: CRC Press
ISBN: 1315354896
Category : Science
Languages : en
Pages : 861
Book Description
This book focuses on basic and advanced concepts of wave propagation in diverse material systems and structures. Topics are organized in increasing order of complexity for better appreciation of the subject. Additionally, the book provides basic guidelines to design many of the futuristic materials and devices for varied applications. The material in the book also can be used for designing safer and more lightweight structures such as aircraft, bridges, and mechanical and structural components. The main objective of this book is to bring both the introductory and the advanced topics of wave propagation into one text. Such a text is necessary considering the multi-disciplinary nature of the subject. This book is written in a step-by step modular approach wherein the chapters are organized so that the complexity in the subject is slowly introduced with increasing chapter numbers. Text starts by introducing all the fundamental aspects of wave propagations and then moves on to advanced topics on the subject. Every chapter is provided with a number of numerical examples of increasing complexity to bring out the concepts clearly The solution of wave propagation is computationally very intensive and hence two different approaches, namely, the Finite Element method and the Spectral Finite method are introduced and have a strong focus on wave propagation. The book is supplemented by an exhaustive list of references at the end of the book for the benefit of readers.
Composites And Metamaterials
Author: Roderic Lakes
Publisher: World Scientific
ISBN: 981121638X
Category : Science
Languages : en
Pages : 279
Book Description
This book is an excellent primer for students to learn about physical properties, particularly mechanical properties of heterogeneous and multiphase materials and the cultivation of physical insight. Written by a prominent author who pioneered many of the concepts, this book provides a comprehensive coverage of fundamental and current topics in traditional composites and new heterogeneous materials.Topics covered include:
Publisher: World Scientific
ISBN: 981121638X
Category : Science
Languages : en
Pages : 279
Book Description
This book is an excellent primer for students to learn about physical properties, particularly mechanical properties of heterogeneous and multiphase materials and the cultivation of physical insight. Written by a prominent author who pioneered many of the concepts, this book provides a comprehensive coverage of fundamental and current topics in traditional composites and new heterogeneous materials.Topics covered include:
Elastic Waves and Metamaterials: The Fundamentals
Author: Yoon Young Kim
Publisher: Springer Nature
ISBN: 9819902053
Category : Science
Languages : en
Pages : 395
Book Description
This book serves as an introductory text for students and engineers with limited knowledge of metamaterials (and elastic waves). This text begins with the most straightforward vibrating systems, such as single and 2-DOF spring-mass systems. It examines the observed phenomena in 2-DOF systems in an unconventional manner to prepare the reader for research on metamaterials. After presenting wave phenomena in an infinitely connected spring-mass system, an elastic bar, a continuous version of an infinite system, is analyzed. This instructional strategy, which progresses from the discrete model to the continuous model, facilitates efficient comprehension of wave and metamaterial concepts. Using continuous and discrete one-dimensional models, bending waves and their manipulation through metamaterials are also discussed. In the latter chapters of this book, advanced readers are introduced to the fundamental wave phenomena in two-dimensional media and wave manipulation using metamaterials, such as mode-converting transmission. As wave phenomena are the fundamental phenomena in vibrating structures, those interested in acoustics and vibration would gain a great deal of knowledge from this book, as the material covered in it offers a very different perspective on oscillatory phenomena than what is typically found in books on acoustics and vibration. Because this book presents a new technique for manipulating waves using metamaterials, engineers and scientists who work with (ultra)sounds and structural vibrations would find it very useful for expanding their knowledge of relevant topics.
Publisher: Springer Nature
ISBN: 9819902053
Category : Science
Languages : en
Pages : 395
Book Description
This book serves as an introductory text for students and engineers with limited knowledge of metamaterials (and elastic waves). This text begins with the most straightforward vibrating systems, such as single and 2-DOF spring-mass systems. It examines the observed phenomena in 2-DOF systems in an unconventional manner to prepare the reader for research on metamaterials. After presenting wave phenomena in an infinitely connected spring-mass system, an elastic bar, a continuous version of an infinite system, is analyzed. This instructional strategy, which progresses from the discrete model to the continuous model, facilitates efficient comprehension of wave and metamaterial concepts. Using continuous and discrete one-dimensional models, bending waves and their manipulation through metamaterials are also discussed. In the latter chapters of this book, advanced readers are introduced to the fundamental wave phenomena in two-dimensional media and wave manipulation using metamaterials, such as mode-converting transmission. As wave phenomena are the fundamental phenomena in vibrating structures, those interested in acoustics and vibration would gain a great deal of knowledge from this book, as the material covered in it offers a very different perspective on oscillatory phenomena than what is typically found in books on acoustics and vibration. Because this book presents a new technique for manipulating waves using metamaterials, engineers and scientists who work with (ultra)sounds and structural vibrations would find it very useful for expanding their knowledge of relevant topics.
Magnetic Polymer Composites and Their Emerging Applications
Author: Sayan Ganguly
Publisher: CRC Press
ISBN: 1040094384
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Magnetic composite particles offer much potential for use in a variety of applications, including manufacturing, environmental protection, microfluidics, microelectronics, and biomedicine. Magnetic Polymer Composites and Their Emerging Applications explores leading research on the fabrication, characterization, properties, and all reported applications of magnetic polymer composites. Features: Discusses synthesis, properties, and modern fabrication technologies of magnetic polymer composites Describes the biocompatibility, suitability, and toxic effects of these materials Covers a variety of applications including those in biomedicine, wastewater treatment, soft robotics, 3D/4D printing, and agriculture Details opportunities and future directions in magnetic polymer composites and their surface decorations This unique book serves as a road map for materials engineers, as well as researchers, academics, technologists, and students working in sensor technology.
Publisher: CRC Press
ISBN: 1040094384
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
Magnetic composite particles offer much potential for use in a variety of applications, including manufacturing, environmental protection, microfluidics, microelectronics, and biomedicine. Magnetic Polymer Composites and Their Emerging Applications explores leading research on the fabrication, characterization, properties, and all reported applications of magnetic polymer composites. Features: Discusses synthesis, properties, and modern fabrication technologies of magnetic polymer composites Describes the biocompatibility, suitability, and toxic effects of these materials Covers a variety of applications including those in biomedicine, wastewater treatment, soft robotics, 3D/4D printing, and agriculture Details opportunities and future directions in magnetic polymer composites and their surface decorations This unique book serves as a road map for materials engineers, as well as researchers, academics, technologists, and students working in sensor technology.
Physics and Mechanics of New Materials and Their Applications
Author: Ivan A. Parinov
Publisher: Springer Nature
ISBN: 3030764818
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
This book presents selected peer-reviewed contributions from the 2020 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2020 (26–29 March 2021, Kitakyushu, Japan), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in computational materials science methods and algorithms (in particular, finite-element and finite-difference modelling) applied to various technological, mechanical, and physical problems. The presented results are important for ongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to promising devices with higher accuracy, increased longevity, and greater potential to work effectively under critical temperatures, high pressure, and in aggressive environments.
Publisher: Springer Nature
ISBN: 3030764818
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
This book presents selected peer-reviewed contributions from the 2020 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2020 (26–29 March 2021, Kitakyushu, Japan), focusing on processing techniques, physics, mechanics, and applications of advanced materials. The book describes a broad spectrum of promising nanostructures, crystal structures, materials, and composites with unique properties. It presents nanotechnological design approaches, environmental-friendly processing techniques, and physicochemical as well as mechanical studies of advanced materials. The selected contributions describe recent progress in computational materials science methods and algorithms (in particular, finite-element and finite-difference modelling) applied to various technological, mechanical, and physical problems. The presented results are important for ongoing efforts concerning the theory, modelling, and testing of advanced materials. Other results are devoted to promising devices with higher accuracy, increased longevity, and greater potential to work effectively under critical temperatures, high pressure, and in aggressive environments.
Multiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization
Author: Fernando Fraternali
Publisher: Frontiers Media SA
ISBN: 2889631850
Category :
Languages : en
Pages : 180
Book Description
Publisher: Frontiers Media SA
ISBN: 2889631850
Category :
Languages : en
Pages : 180
Book Description
Metamaterials and Wave Control
Author: Eric Lheurette
Publisher: John Wiley & Sons
ISBN: 1118761855
Category : Science
Languages : en
Pages : 260
Book Description
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. On the one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand, metamaterials also provide new tools for the design of well-known wave functions such as antennas for electromagnetic waves. The goal of this book is to propose an overview of the concept of metamaterials as a perspective on a new practical tool for wave study and engineering. This includes both the electromagnetic spectrum, from microwave to optics, and the field of acoustic waves. Contents 1. Overview of Microwave and Optical Metamaterial Technologies, Didier Lippens. 2. MetaLines: Transmission Line Approach for the Design of Metamaterial Devices, Bruno Sauviac. 3. Metamaterials for Non-Radiative Microwave Functions and Antennas, Divitha Seetharamdoo and Bruno Sauviac. 4. Toward New Prospects for Electromagnetic Compatibility, Divitha Seetharamdoo. 5. Dissipative Loss in Resonant Metamaterials, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis. 6. Transformation Optics and Antennas, André de Lustrac, Shah Nawaz Burokur and Paul-Henri Tichit. 7. Metamaterials for Control of Surface Electromagnetic and Liquid Waves, Sébastien Guenneau, Mohamed Farhat, Muamer Kadic, Stefan Enoch and Romain Quidant. 8. Classical Analog of Electromagnetically Induced Transparency, Philippe Tassin, Thomas Koschny and Costas M. Soukoulis.
Publisher: John Wiley & Sons
ISBN: 1118761855
Category : Science
Languages : en
Pages : 260
Book Description
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. On the one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand, metamaterials also provide new tools for the design of well-known wave functions such as antennas for electromagnetic waves. The goal of this book is to propose an overview of the concept of metamaterials as a perspective on a new practical tool for wave study and engineering. This includes both the electromagnetic spectrum, from microwave to optics, and the field of acoustic waves. Contents 1. Overview of Microwave and Optical Metamaterial Technologies, Didier Lippens. 2. MetaLines: Transmission Line Approach for the Design of Metamaterial Devices, Bruno Sauviac. 3. Metamaterials for Non-Radiative Microwave Functions and Antennas, Divitha Seetharamdoo and Bruno Sauviac. 4. Toward New Prospects for Electromagnetic Compatibility, Divitha Seetharamdoo. 5. Dissipative Loss in Resonant Metamaterials, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis. 6. Transformation Optics and Antennas, André de Lustrac, Shah Nawaz Burokur and Paul-Henri Tichit. 7. Metamaterials for Control of Surface Electromagnetic and Liquid Waves, Sébastien Guenneau, Mohamed Farhat, Muamer Kadic, Stefan Enoch and Romain Quidant. 8. Classical Analog of Electromagnetically Induced Transparency, Philippe Tassin, Thomas Koschny and Costas M. Soukoulis.
Programmable Elastic Metamaterials for Wave Control and Device Applications
Author: Hui Chen
Publisher: Frontiers Media SA
ISBN: 2832537146
Category : Science
Languages : en
Pages : 108
Book Description
Emerging from electromagnetic waves and fast extending to acoustic and elastic waves, metamaterials that exhibit extraordinary wave control abilities have been gaining soaring attention. Over the past two decades, elastic metamaterials with engineered microstructures have provided a variety of appealing solutions for controlling elastic waves and vibrations. By tailoring their internal microstructures at a subwavelength scale, elastic metamaterials fruitfully distinct themselves from traditional materials or phononic crystals by their striking functions in wave trajectory manipulation, cloaking, nonreciprocal and topological wave control, as well as low-frequency wave/vibration mitigation and absorption.
Publisher: Frontiers Media SA
ISBN: 2832537146
Category : Science
Languages : en
Pages : 108
Book Description
Emerging from electromagnetic waves and fast extending to acoustic and elastic waves, metamaterials that exhibit extraordinary wave control abilities have been gaining soaring attention. Over the past two decades, elastic metamaterials with engineered microstructures have provided a variety of appealing solutions for controlling elastic waves and vibrations. By tailoring their internal microstructures at a subwavelength scale, elastic metamaterials fruitfully distinct themselves from traditional materials or phononic crystals by their striking functions in wave trajectory manipulation, cloaking, nonreciprocal and topological wave control, as well as low-frequency wave/vibration mitigation and absorption.