An Introduction to Metaheuristics for Optimization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Introduction to Metaheuristics for Optimization PDF full book. Access full book title An Introduction to Metaheuristics for Optimization by Bastien Chopard. Download full books in PDF and EPUB format.

An Introduction to Metaheuristics for Optimization

An Introduction to Metaheuristics for Optimization PDF Author: Bastien Chopard
Publisher: Springer
ISBN: 9783319930725
Category : Computers
Languages : en
Pages :

Book Description
The authors stress the relative simplicity, efficiency, flexibility of use, and suitability of various approaches used to solve difficult optimization problems. The authors are experienced, interdisciplinary lecturers and researchers and in their explanations they demonstrate many shared foundational concepts among the key methodologies. This textbook is a suitable introduction for undergraduate and graduate students, researchers, and professionals in computer science, engineering, and logistics.

An Introduction to Metaheuristics for Optimization

An Introduction to Metaheuristics for Optimization PDF Author: Bastien Chopard
Publisher: Springer
ISBN: 9783319930725
Category : Computers
Languages : en
Pages :

Book Description
The authors stress the relative simplicity, efficiency, flexibility of use, and suitability of various approaches used to solve difficult optimization problems. The authors are experienced, interdisciplinary lecturers and researchers and in their explanations they demonstrate many shared foundational concepts among the key methodologies. This textbook is a suitable introduction for undergraduate and graduate students, researchers, and professionals in computer science, engineering, and logistics.

Engineering Optimization

Engineering Optimization PDF Author: Xin-She Yang
Publisher: John Wiley & Sons
ISBN: 0470640413
Category : Mathematics
Languages : en
Pages : 377

Book Description
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Search and Optimization by Metaheuristics

Search and Optimization by Metaheuristics PDF Author: Ke-Lin Du
Publisher: Birkhäuser
ISBN: 3319411926
Category : Computers
Languages : en
Pages : 437

Book Description
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.

Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications

Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications PDF Author: Modestus O. Okwu
Publisher: Springer Nature
ISBN: 3030611116
Category : Technology & Engineering
Languages : en
Pages : 196

Book Description
This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.

Metaheuristics and Optimization in Computer and Electrical Engineering

Metaheuristics and Optimization in Computer and Electrical Engineering PDF Author: Navid Razmjooy
Publisher: Springer
ISBN: 9783030566913
Category : Technology & Engineering
Languages : en
Pages : 311

Book Description
The use of artificial intelligence, especially in the field of optimization is increasing day by day. The purpose of this book is to explore the possibility of using different kinds of optimization algorithms to advance and enhance the tools used for computer and electrical engineering purposes.

Metaheuristics for Combinatorial Optimization

Metaheuristics for Combinatorial Optimization PDF Author: Salvatore Greco
Publisher: Springer Nature
ISBN: 3030685209
Category : Technology & Engineering
Languages : en
Pages : 69

Book Description
This book presents novel and original metaheuristics developed to solve the cost-balanced traveling salesman problem. This problem was taken into account for the Metaheuristics Competition proposed in MESS 2018, Metaheuristics Summer School, and the top 4 methodologies ranked are included in the book, together with a brief introduction to the traveling salesman problem and all its variants. The book is aimed particularly at all researchers in metaheuristics and combinatorial optimization areas. Key uses are metaheuristics; complex problem solving; combinatorial optimization; traveling salesman problem.

Handbook of Metaheuristics

Handbook of Metaheuristics PDF Author: Michel Gendreau
Publisher: Springer
ISBN: 3319910868
Category : Business & Economics
Languages : en
Pages : 611

Book Description
The third edition of this handbook is designed to provide a broad coverage of the concepts, implementations, and applications in metaheuristics. The book’s chapters serve as stand-alone presentations giving both the necessary underpinnings as well as practical guides for implementation. The nature of metaheuristics invites an analyst to modify basic methods in response to problem characteristics, past experiences, and personal preferences, and the chapters in this handbook are designed to facilitate this process as well. This new edition has been fully revised and features new chapters on swarm intelligence and automated design of metaheuristics from flexible algorithm frameworks. The authors who have contributed to this volume represent leading figures from the metaheuristic community and are responsible for pioneering contributions to the fields they write about. Their collective work has significantly enriched the field of optimization in general and combinatorial optimization in particular.Metaheuristics are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. In addition, many new and exciting developments and extensions have been observed in the last few years. Hybrids of metaheuristics with other optimization techniques, like branch-and-bound, mathematical programming or constraint programming are also increasingly popular. On the front of applications, metaheuristics are now used to find high-quality solutions to an ever-growing number of complex, ill-defined real-world problems, in particular combinatorial ones. This handbook should continue to be a great reference for researchers, graduate students, as well as practitioners interested in metaheuristics.

Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance

Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance PDF Author: Vasant, Pandian M.
Publisher: IGI Global
ISBN: 1466620870
Category : Computers
Languages : en
Pages : 735

Book Description
Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.

Introduction to Mathematical Optimization

Introduction to Mathematical Optimization PDF Author: Xin-She Yang
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 172

Book Description
This book strives to provide a balanced coverage of efficient algorithms commonly used in solving mathematical optimization problems. It covers both the convectional algorithms and modern heuristic and metaheuristic methods. Topics include gradient-based algorithms such as Newton-Raphson method, steepest descent method, Hooke-Jeeves pattern search, Lagrange multipliers, linear programming, particle swarm optimization (PSO), simulated annealing (SA), and Tabu search. Multiobjective optimization including important concepts such as Pareto optimality and utility method is also described. Three Matlab and Octave programs so as to demonstrate how PSO and SA work are provided. An example of demonstrating how to modify these programs to solve multiobjective optimization problems using recursive method is discussed.

Metaheuristics for Portfolio Optimization

Metaheuristics for Portfolio Optimization PDF Author: G. A. Vijayalakshmi Pai
Publisher: John Wiley & Sons
ISBN: 111948278X
Category : Computers
Languages : en
Pages : 322

Book Description
The book is a monograph in the cross disciplinary area of Computational Intelligence in Finance and elucidates a collection of practical and strategic Portfolio Optimization models in Finance, that employ Metaheuristics for their effective solutions and demonstrates the results using MATLAB implementations, over live portfolios invested across global stock universes. The book has been structured in such a way that, even novices in finance or metaheuristics should be able to comprehend and work on the hybrid models discussed in the book.