An Information-Theoretic Approach to Neural Computing

An Information-Theoretic Approach to Neural Computing PDF Author: Gustavo Deco
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265

Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms PDF Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694

Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Information-Theoretic Aspects of Neural Networks

Information-Theoretic Aspects of Neural Networks PDF Author: P. S. Neelakanta
Publisher: CRC Press
ISBN: 1000102750
Category : History
Languages : en
Pages : 417

Book Description
Information theoretics vis-a-vis neural networks generally embodies parametric entities and conceptual bases pertinent to memory considerations and information storage, information-theoretic based cost-functions, and neurocybernetics and self-organization. Existing studies only sparsely cover the entropy and/or cybernetic aspects of neural information. Information-Theoretic Aspects of Neural Networks cohesively explores this burgeoning discipline, covering topics such as: Shannon information and information dynamics neural complexity as an information processing system memory and information storage in the interconnected neural web extremum (maximum and minimum) information entropy neural network training non-conventional, statistical distance-measures for neural network optimizations symmetric and asymmetric characteristics of information-theoretic error-metrics algorithmic complexity based representation of neural information-theoretic parameters genetic algorithms versus neural information dynamics of neurocybernetics viewed in the information-theoretic plane nonlinear, information-theoretic transfer function of the neural cellular units statistical mechanics, neural networks, and information theory semiotic framework of neural information processing and neural information flow fuzzy information and neural networks neural dynamics conceived through fuzzy information parameters neural information flow dynamics informatics of neural stochastic resonance Information-Theoretic Aspects of Neural Networks acts as an exceptional resource for engineers, scientists, and computer scientists working in the field of artificial neural networks as well as biologists applying the concepts of communication theory and protocols to the functioning of the brain. The information in this book explores new avenues in the field and creates a common platform for analyzing the neural complex as well as artificial neural networks.

ICANN 98

ICANN 98 PDF Author: Lars Niklasson
Publisher: Springer Science & Business Media
ISBN: 1447115996
Category : Computers
Languages : en
Pages : 1197

Book Description
ICANN, the International Conference on Artificial Neural Networks, is the official conference series of the European Neural Network Society which started in Helsinki in 1991. Since then ICANN has taken place in Brighton, Amsterdam, Sorrento, Paris, Bochum and Lausanne, and has become Europe's major meeting in the field of neural networks. This book contains the proceedings of ICANN 98, held 2-4 September 1998 in Skovde, Sweden. Of 340 submissions to ICANN 98, 180 were accepted for publication and presentation at the conference. In addition, this book contains seven invited papers presented at the conference. A conference of this size is obviously not organized by three individuals alone. We therefore would like to thank the following people and organizations for supporting ICANN 98 in one way or another: • the European Neural Network Society and the Swedish Neural Network Society for their active support in the organization of this conference, • the Programme Committee and all reviewers for the hard and timely work that was required to produce more than 900 reviews during April 1998, • the Steering Committee which met in Skovde in May 1998 for the final selection of papers and the preparation of the conference program, • the other Module Chairs: Bengt Asker (Industry and Research), Harald Brandt (Applications), Anders Lansner (Computational Neuroscience and Brain Theory), Thorsteinn Rognvaldsson (Theory), Noel Sharkey (co chair Autonomous Robotics and Adaptive Behavior), Bertil Svensson (Hardware and Implementations), • the conference secretary, Leila Khammari, and the rest of the

Introduction To The Theory Of Neural Computation

Introduction To The Theory Of Neural Computation PDF Author: John A. Hertz
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 352

Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Artificial Intelligence in the Age of Neural Networks and Brain Computing PDF Author: Robert Kozma
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398

Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Artificial Neural Networks-Icann '97

Artificial Neural Networks-Icann '97 PDF Author: Wulfram Gerstner
Publisher: Springer Science & Business Media
ISBN: 9783540636311
Category : Computers
Languages : en
Pages : 1300

Book Description
Content Description #Includes bibliographical references and index.

Artificial Neural Networks — ICANN 2002

Artificial Neural Networks — ICANN 2002 PDF Author: Jose R. Dorronsoro
Publisher: Springer
ISBN: 3540460845
Category : Computers
Languages : en
Pages : 1396

Book Description
The International Conferences on Arti?cial Neural Networks, ICANN, have been held annually since 1991 and over the years have become the major European meeting in neural networks. This proceedings volume contains all the papers presented at ICANN 2002, the 12th ICANN conference, held in August 28– 30, 2002 at the Escuela T ́ecnica Superior de Inform ́atica of the Universidad Aut ́onoma de Madrid and organized by its Neural Networks group. ICANN 2002 received a very high number of contributions, more than 450. Almost all papers were revised by three independent reviewers, selected among the more than 240 serving at this year’s ICANN, and 221 papers were ?nally selected for publication in these proceedings (due to space considerations, quite a few good contributions had to be left out). I would like to thank the Program Committee and all the reviewers for the great collective e?ort and for helping us to have a high quality conference.

Artificial Neural Networks and Machine Learning -- ICANN 2012

Artificial Neural Networks and Machine Learning -- ICANN 2012 PDF Author: Alessandro Villa
Publisher: Springer
ISBN: 3642332668
Category : Computers
Languages : en
Pages : 612

Book Description
The two-volume set LNCS 7552 + 7553 constitutes the proceedings of the 22nd International Conference on Artificial Neural Networks, ICANN 2012, held in Lausanne, Switzerland, in September 2012. The 162 papers included in the proceedings were carefully reviewed and selected from 247 submissions. They are organized in topical sections named: theoretical neural computation; information and optimization; from neurons to neuromorphism; spiking dynamics; from single neurons to networks; complex firing patterns; movement and motion; from sensation to perception; object and face recognition; reinforcement learning; bayesian and echo state networks; recurrent neural networks and reservoir computing; coding architectures; interacting with the brain; swarm intelligence and decision-making; mulitlayer perceptrons and kernel networks; training and learning; inference and recognition; support vector machines; self-organizing maps and clustering; clustering, mining and exploratory analysis; bioinformatics; and time weries and forecasting.