Author: William J. Galloway
Publisher:
ISBN:
Category :
Languages : en
Pages : 22
Book Description
An Experimental Study of Acoustically Induced Cavitation in Liquids
The Acoustic Bubble
Author: T Leighton
Publisher: Academic Press
ISBN: 0323144136
Category : Science
Languages : en
Pages : 641
Book Description
The Acoustic Bubble describes the interaction of acoustic fields with bubbles in liquid. The book consists of five chapters. Chapter 1 provides a basic introduction to acoustics, including some of the more esoteric phenomena that can be seen when high-frequency high-intensity underwater sound is employed. Chapter 2 discusses the nucleation of cavitation and basic fluid dynamics, while Chapter 3 draws together the acoustics and bubble dynamics to discuss the free oscillation of a bubble and acoustic emissions from such activity. The acoustic probes that are often applied to study the behavior of a bubble when an externally-applied acoustic field drives it into oscillation is deliberated in Chapter 4. The last chapter outlines a variety of effects associated with acoustically-induced bubble activity. The bubble detection, sonoluminescence, sonochemistry, and pulse enhancement are also covered. This publication is a good reference for physics and engineering students and researchers intending to acquire knowledge of the acoustic interactions of acoustic fields with bubbles.
Publisher: Academic Press
ISBN: 0323144136
Category : Science
Languages : en
Pages : 641
Book Description
The Acoustic Bubble describes the interaction of acoustic fields with bubbles in liquid. The book consists of five chapters. Chapter 1 provides a basic introduction to acoustics, including some of the more esoteric phenomena that can be seen when high-frequency high-intensity underwater sound is employed. Chapter 2 discusses the nucleation of cavitation and basic fluid dynamics, while Chapter 3 draws together the acoustics and bubble dynamics to discuss the free oscillation of a bubble and acoustic emissions from such activity. The acoustic probes that are often applied to study the behavior of a bubble when an externally-applied acoustic field drives it into oscillation is deliberated in Chapter 4. The last chapter outlines a variety of effects associated with acoustically-induced bubble activity. The bubble detection, sonoluminescence, sonochemistry, and pulse enhancement are also covered. This publication is a good reference for physics and engineering students and researchers intending to acquire knowledge of the acoustic interactions of acoustic fields with bubbles.
Report - Naval Ship Research and Development Center
Author: David W. Taylor Naval Ship Research and Development Center
Publisher:
ISBN:
Category : Shipbuilding
Languages : en
Pages : 836
Book Description
Publisher:
ISBN:
Category : Shipbuilding
Languages : en
Pages : 836
Book Description
Acoustic Cavitation and Bubble Dynamics
Author: Kyuichi Yasui
Publisher: Springer
ISBN: 3319682377
Category : Science
Languages : en
Pages : 131
Book Description
This brief explains in detail fundamental concepts in acoustic cavitation and bubble dynamics, and describes derivations of the fundamental equations of bubble dynamics in order to support those readers just beginning research in this field. Further, it provides an in-depth understanding of the physical basis of the phenomena. With regard to sonochemistry, the brief presents the results of numerical simulations of chemical reactions inside a bubble under ultrasound, especially for a single-bubble system and including unsolved problems. Written so as to be accessible both with and without prior knowledge of fundamental fluid dynamics, the brief offers a valuable resource for students and researchers alike, especially those who are unfamiliar with this field. A grasp of fundamental undergraduate mathematics such as partial derivative and fundamental integration is advantageous; however, even without any background in mathematics, readers can skip the equations and still understand the fundamental physics of the phenomena using the book’s wealth of illustrations and figures. As such, it is also suitable as an introduction to the field.
Publisher: Springer
ISBN: 3319682377
Category : Science
Languages : en
Pages : 131
Book Description
This brief explains in detail fundamental concepts in acoustic cavitation and bubble dynamics, and describes derivations of the fundamental equations of bubble dynamics in order to support those readers just beginning research in this field. Further, it provides an in-depth understanding of the physical basis of the phenomena. With regard to sonochemistry, the brief presents the results of numerical simulations of chemical reactions inside a bubble under ultrasound, especially for a single-bubble system and including unsolved problems. Written so as to be accessible both with and without prior knowledge of fundamental fluid dynamics, the brief offers a valuable resource for students and researchers alike, especially those who are unfamiliar with this field. A grasp of fundamental undergraduate mathematics such as partial derivative and fundamental integration is advantageous; however, even without any background in mathematics, readers can skip the equations and still understand the fundamental physics of the phenomena using the book’s wealth of illustrations and figures. As such, it is also suitable as an introduction to the field.
University of Iowa Studies in Engineering
Sonochemistry and the Acoustic Bubble
Author: Franz Grieser
Publisher: Elsevier
ISBN: 0128017260
Category : Science
Languages : en
Pages : 299
Book Description
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the phenomena are simply, but comprehensively presented. In addition, potential industrial and medical applications of acoustic cavitation and its chemical effects are described and reviewed. The book is suitable for graduate students working with ultrasound, and for potential chemists and chemical engineers wanting to understand the basics of how ultrasound acts in a liquid to cause chemical and physical effects. - Experimental methods on acoustic cavitation and sonochemistry - Helps users understand how to readily begin experiments in the field - Provides an understanding of the physics behind the phenomenon - Contains examples of (possible) industrial applications in chemical engineering and environmental technologies - Presents the possibilities for adopting the action of acoustic cavitation with respect to industrial applications
Publisher: Elsevier
ISBN: 0128017260
Category : Science
Languages : en
Pages : 299
Book Description
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the phenomena are simply, but comprehensively presented. In addition, potential industrial and medical applications of acoustic cavitation and its chemical effects are described and reviewed. The book is suitable for graduate students working with ultrasound, and for potential chemists and chemical engineers wanting to understand the basics of how ultrasound acts in a liquid to cause chemical and physical effects. - Experimental methods on acoustic cavitation and sonochemistry - Helps users understand how to readily begin experiments in the field - Provides an understanding of the physics behind the phenomenon - Contains examples of (possible) industrial applications in chemical engineering and environmental technologies - Presents the possibilities for adopting the action of acoustic cavitation with respect to industrial applications
Physical Principles of Medical Ultrasonics
Author: C. R. Hill
Publisher: John Wiley & Sons
ISBN: 047009396X
Category : Medical
Languages : en
Pages : 528
Book Description
The physical properties of ultrasound, particularly its highly directional beam behaviour, and its complex interactions with human tissues, have led to its becoming a vitally important tool in both investigative and interventional medicine, and one that still has much exciting potential. This new edition of a well-received book treats the phenomenon of ultrasound in the context of medical and biological applications, systematically discussing fundamental physical principles and concepts. Rather than focusing on earlier treatments, based largely on the simplifications of geometrical acoustics, this book examines concepts of wave acoustics, introducing them in the very first chapter. Practical implications of these concepts are explored, first the generation and nature of acoustic fields, and then their formal descriptions and measurement. Real tissues attenuate and scatter ultrasound in ways that have interesting relationships to their physical chemistry, and the book includes coverage of these topics. Physical Principles of Medical Ultrasonics also includes critical accounts and discussions of the wide variety of diagnostic and investigative applications of ultrasound that are now becoming available in medicine and biology. The book also encompasses the biophysics of ultrasound, its practical applications to therapeutic and surgical objectives, and its implications in questions of hazards to both patient and operator.
Publisher: John Wiley & Sons
ISBN: 047009396X
Category : Medical
Languages : en
Pages : 528
Book Description
The physical properties of ultrasound, particularly its highly directional beam behaviour, and its complex interactions with human tissues, have led to its becoming a vitally important tool in both investigative and interventional medicine, and one that still has much exciting potential. This new edition of a well-received book treats the phenomenon of ultrasound in the context of medical and biological applications, systematically discussing fundamental physical principles and concepts. Rather than focusing on earlier treatments, based largely on the simplifications of geometrical acoustics, this book examines concepts of wave acoustics, introducing them in the very first chapter. Practical implications of these concepts are explored, first the generation and nature of acoustic fields, and then their formal descriptions and measurement. Real tissues attenuate and scatter ultrasound in ways that have interesting relationships to their physical chemistry, and the book includes coverage of these topics. Physical Principles of Medical Ultrasonics also includes critical accounts and discussions of the wide variety of diagnostic and investigative applications of ultrasound that are now becoming available in medicine and biology. The book also encompasses the biophysics of ultrasound, its practical applications to therapeutic and surgical objectives, and its implications in questions of hazards to both patient and operator.
State University of Iowa Studies in Engineering
Simulations in Biomedicine V
Author: Z. M. Arnez
Publisher: WIT Press
ISBN: 1853129658
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
Computer models have become increasingly successful in simulating biological phenomena. The advantages of this approach are numerous, particularly in biomedicine where it has led to a better understanding of the mechanics of physiological processes. The use of computational models has also spread to many applications in medicine, as demonstrated by the contents of this volume. Containing papers presented at the Fifth International Conference on Computer Simulations in Biomedicine, the book covers a broad spectrum of topics on applications in this area. The contributions featured are arranged in sections according to their medical and biological perspective in order to make the contents more accessible to medical professionals. Over 50 papers are included and these are divided under the general headings: Simulation of Physiological Processes; Cardiovascular System (Vascular System; Lung; Cardiac; Applications); Artificial Limbs & Joints – Orthopaedics & Biomechanics; Electrical Stimulation (Functional Electrical Stimulation; Cellular Engineering); Data Acquisition & Computer Vision – Analysis & Diagnostics; Applications of Artificial Intelligence in Medicine; and Virtual & Intelligent Environments.
Publisher: WIT Press
ISBN: 1853129658
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
Computer models have become increasingly successful in simulating biological phenomena. The advantages of this approach are numerous, particularly in biomedicine where it has led to a better understanding of the mechanics of physiological processes. The use of computational models has also spread to many applications in medicine, as demonstrated by the contents of this volume. Containing papers presented at the Fifth International Conference on Computer Simulations in Biomedicine, the book covers a broad spectrum of topics on applications in this area. The contributions featured are arranged in sections according to their medical and biological perspective in order to make the contents more accessible to medical professionals. Over 50 papers are included and these are divided under the general headings: Simulation of Physiological Processes; Cardiovascular System (Vascular System; Lung; Cardiac; Applications); Artificial Limbs & Joints – Orthopaedics & Biomechanics; Electrical Stimulation (Functional Electrical Stimulation; Cellular Engineering); Data Acquisition & Computer Vision – Analysis & Diagnostics; Applications of Artificial Intelligence in Medicine; and Virtual & Intelligent Environments.
Liquids Under Negative Pressure
Author: A.R. Imre
Publisher: Springer Science & Business Media
ISBN: 9781402008955
Category : Science
Languages : en
Pages : 364
Book Description
It is possible to "stretch" a liquid and, when suitably prepared, liquids are capable of sustaining substantial levels of tension, often for significant periods of time. These negative pressure states are metastable but can last for days - long enough for substantial experimental investigation. This volume is a review of recent and current research into the behaviour of liquids under negative pressure. Part I deals with the thermodynamics of stretched liquids. Part II discusses the physical and chemical behaviour of liquids under negative pressure. Part III contains papers on the effect of negative pressure on the solidification of a liquid. Part IV is devoted to stretched helium and Part V discusses cavitation in various stretched liquids. Part VI deals with the effect of foreign substances on cavitation.
Publisher: Springer Science & Business Media
ISBN: 9781402008955
Category : Science
Languages : en
Pages : 364
Book Description
It is possible to "stretch" a liquid and, when suitably prepared, liquids are capable of sustaining substantial levels of tension, often for significant periods of time. These negative pressure states are metastable but can last for days - long enough for substantial experimental investigation. This volume is a review of recent and current research into the behaviour of liquids under negative pressure. Part I deals with the thermodynamics of stretched liquids. Part II discusses the physical and chemical behaviour of liquids under negative pressure. Part III contains papers on the effect of negative pressure on the solidification of a liquid. Part IV is devoted to stretched helium and Part V discusses cavitation in various stretched liquids. Part VI deals with the effect of foreign substances on cavitation.