Author: Shimer Zane Pinckney
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 68
Book Description
Method for Predicting Compressible Turbulent Boundary Layers in Adverse Pressure Gradients
Author: Shimer Zane Pinckney
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 68
Book Description
Publisher:
ISBN:
Category : Boundary layer
Languages : en
Pages : 68
Book Description
Scientific and Technical Aerospace Reports
Analytical Fluid Dynamics
Author: George Emanuel
Publisher: CRC Press
ISBN: 1351374583
Category : Technology & Engineering
Languages : en
Pages : 1091
Book Description
New Edition Now Covers Shock-Wave Analysis An in-depth presentation of analytical methods and physical foundations, Analytical Fluid Dynamics, Third Edition breaks down the "how" and "why" of fluid dynamics. While continuing to cover the most fundamental topics in fluid mechanics, this latest work emphasizes advanced analytical approaches to aid in the analytical process and corresponding physical interpretation. It also addresses the need for a more flexible mathematical language (utilizing vector and tensor analysis and transformation theory) to cover the growing complexity of fluid dynamics. Revised and updated, the text centers on shock-wave structure, shock-wave derivatives, and shock-produced vorticity; supersonic diffusers; thrust and lift from an asymmetric nozzle; and outlines operator methods and laminar boundary-layer theory. In addition, the discussion introduces pertinent assumptions, reasons for studying a particular topic, background discussion, illustrative examples, and numerous end-of-chapter problems. Utilizing a wide variety of topics on inviscid and viscous fluid dynamics, the author covers material that includes: Viscous dissipation The second law of thermodynamics Calorically imperfect gas flows Aerodynamic sweep Shock-wave interference Unsteady one-dimensional flow Internal ballistics Force and momentum balance The Substitution Principle Rarefaction shock waves A comprehensive treatment of flow property derivatives just downstream of an unsteady three-dimensional shock Shock-generated vorticity Triple points An extended version of the Navier‒Stokes equations Shock-free supersonic diffusers Lift and thrust from an asymmetric nozzle Analytical Fluid Dynamics, Third Edition outlines the basics of analytical fluid mechanics while emphasizing analytical approaches to fluid dynamics. Covering the material in-depth, this book provides an authoritative interpretation of formulations and procedures in analytical fluid dynamics, and offers analytical solutions to fluid dynamic problems.
Publisher: CRC Press
ISBN: 1351374583
Category : Technology & Engineering
Languages : en
Pages : 1091
Book Description
New Edition Now Covers Shock-Wave Analysis An in-depth presentation of analytical methods and physical foundations, Analytical Fluid Dynamics, Third Edition breaks down the "how" and "why" of fluid dynamics. While continuing to cover the most fundamental topics in fluid mechanics, this latest work emphasizes advanced analytical approaches to aid in the analytical process and corresponding physical interpretation. It also addresses the need for a more flexible mathematical language (utilizing vector and tensor analysis and transformation theory) to cover the growing complexity of fluid dynamics. Revised and updated, the text centers on shock-wave structure, shock-wave derivatives, and shock-produced vorticity; supersonic diffusers; thrust and lift from an asymmetric nozzle; and outlines operator methods and laminar boundary-layer theory. In addition, the discussion introduces pertinent assumptions, reasons for studying a particular topic, background discussion, illustrative examples, and numerous end-of-chapter problems. Utilizing a wide variety of topics on inviscid and viscous fluid dynamics, the author covers material that includes: Viscous dissipation The second law of thermodynamics Calorically imperfect gas flows Aerodynamic sweep Shock-wave interference Unsteady one-dimensional flow Internal ballistics Force and momentum balance The Substitution Principle Rarefaction shock waves A comprehensive treatment of flow property derivatives just downstream of an unsteady three-dimensional shock Shock-generated vorticity Triple points An extended version of the Navier‒Stokes equations Shock-free supersonic diffusers Lift and thrust from an asymmetric nozzle Analytical Fluid Dynamics, Third Edition outlines the basics of analytical fluid mechanics while emphasizing analytical approaches to fluid dynamics. Covering the material in-depth, this book provides an authoritative interpretation of formulations and procedures in analytical fluid dynamics, and offers analytical solutions to fluid dynamic problems.
Analytical Fluid Dynamics, Third Edition
Author: George Emanuel
Publisher: CRC Press
ISBN: 1498715702
Category : Technology & Engineering
Languages : en
Pages : 641
Book Description
New Edition Now Covers Shock-Wave Analysis An in-depth presentation of analytical methods and physical foundations, Analytical Fluid Dynamics, Third Edition breaks down the "how" and "why" of fluid dynamics. While continuing to cover the most fundamental topics in fluid mechanics, this latest work emphasizes advanced analytical approaches to aid in the analytical process and corresponding physical interpretation. It also addresses the need for a more flexible mathematical language (utilizing vector and tensor analysis and transformation theory) to cover the growing complexity of fluid dynamics. Revised and updated, the text centers on shock-wave structure, shock-wave derivatives, and shock-produced vorticity; supersonic diffusers; thrust and lift from an asymmetric nozzle; and outlines operator methods and laminar boundary-layer theory. In addition, the discussion introduces pertinent assumptions, reasons for studying a particular topic, background discussion, illustrative examples, and numerous end-of-chapter problems. Utilizing a wide variety of topics on inviscid and viscous fluid dynamics, the author covers material that includes: Viscous dissipation The second law of thermodynamics Calorically imperfect gas flows Aerodynamic sweep Shock-wave interference Unsteady one-dimensional flow Internal ballistics Force and momentum balance The Substitution Principle Rarefaction shock waves A comprehensive treatment of flow property derivatives just downstream of an unsteady three-dimensional shock Shock-generated vorticity Triple points An extended version of the Navier‒Stokes equations Shock-free supersonic diffusers Lift and thrust from an asymmetric nozzle Analytical Fluid Dynamics, Third Edition outlines the basics of analytical fluid mechanics while emphasizing analytical approaches to fluid dynamics. Covering the material in-depth, this book provides an authoritative interpretation of formulations and procedures in analytical fluid dynamics, and offers analytical solutions to fluid dynamic problems.
Publisher: CRC Press
ISBN: 1498715702
Category : Technology & Engineering
Languages : en
Pages : 641
Book Description
New Edition Now Covers Shock-Wave Analysis An in-depth presentation of analytical methods and physical foundations, Analytical Fluid Dynamics, Third Edition breaks down the "how" and "why" of fluid dynamics. While continuing to cover the most fundamental topics in fluid mechanics, this latest work emphasizes advanced analytical approaches to aid in the analytical process and corresponding physical interpretation. It also addresses the need for a more flexible mathematical language (utilizing vector and tensor analysis and transformation theory) to cover the growing complexity of fluid dynamics. Revised and updated, the text centers on shock-wave structure, shock-wave derivatives, and shock-produced vorticity; supersonic diffusers; thrust and lift from an asymmetric nozzle; and outlines operator methods and laminar boundary-layer theory. In addition, the discussion introduces pertinent assumptions, reasons for studying a particular topic, background discussion, illustrative examples, and numerous end-of-chapter problems. Utilizing a wide variety of topics on inviscid and viscous fluid dynamics, the author covers material that includes: Viscous dissipation The second law of thermodynamics Calorically imperfect gas flows Aerodynamic sweep Shock-wave interference Unsteady one-dimensional flow Internal ballistics Force and momentum balance The Substitution Principle Rarefaction shock waves A comprehensive treatment of flow property derivatives just downstream of an unsteady three-dimensional shock Shock-generated vorticity Triple points An extended version of the Navier‒Stokes equations Shock-free supersonic diffusers Lift and thrust from an asymmetric nozzle Analytical Fluid Dynamics, Third Edition outlines the basics of analytical fluid mechanics while emphasizing analytical approaches to fluid dynamics. Covering the material in-depth, this book provides an authoritative interpretation of formulations and procedures in analytical fluid dynamics, and offers analytical solutions to fluid dynamic problems.
Analysis of Turbulent Flows with Computer Programs
Author: Tuncer Cebeci
Publisher: Butterworth-Heinemann
ISBN: 0080983391
Category : Computers
Languages : en
Pages : 465
Book Description
Analysis of Turbulent Flows is written by one of the most prolific authors in the field of CFD. Professor of Aerodynamics at SUPAERO and Director of DMAE at ONERA, Professor Tuncer Cebeci calls on both his academic and industrial experience when presenting this work. Each chapter has been specifically constructed to provide a comprehensive overview of turbulent flow and its measurement. Analysis of Turbulent Flows serves as an advanced textbook for PhD candidates working in the field of CFD and is essential reading for researchers, practitioners in industry and MSc and MEng students. The field of CFD is strongly represented by the following corporate organizations: Boeing, Airbus, Thales, United Technologies and General Electric. Government bodies and academic institutions also have a strong interest in this exciting field. - An overview of the development and application of computational fluid dynamics (CFD), with real applications to industry - Contains a unique section on short-cut methods – simple approaches to practical engineering problems
Publisher: Butterworth-Heinemann
ISBN: 0080983391
Category : Computers
Languages : en
Pages : 465
Book Description
Analysis of Turbulent Flows is written by one of the most prolific authors in the field of CFD. Professor of Aerodynamics at SUPAERO and Director of DMAE at ONERA, Professor Tuncer Cebeci calls on both his academic and industrial experience when presenting this work. Each chapter has been specifically constructed to provide a comprehensive overview of turbulent flow and its measurement. Analysis of Turbulent Flows serves as an advanced textbook for PhD candidates working in the field of CFD and is essential reading for researchers, practitioners in industry and MSc and MEng students. The field of CFD is strongly represented by the following corporate organizations: Boeing, Airbus, Thales, United Technologies and General Electric. Government bodies and academic institutions also have a strong interest in this exciting field. - An overview of the development and application of computational fluid dynamics (CFD), with real applications to industry - Contains a unique section on short-cut methods – simple approaches to practical engineering problems
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 532
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 532
Book Description
AGARD Conference Proceedings
Author: North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 600
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 600
Book Description
Applied Mechanics Reviews
Bibliography of Aeronautics. Pt. 1-50
Author: United States. Work Projects Administration
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 148
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 148
Book Description
Engineering Turbulence Modelling and Experiments - 4
Author: D. Laurence
Publisher: Elsevier
ISBN: 0080530982
Category : Science
Languages : en
Pages : 975
Book Description
These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.
Publisher: Elsevier
ISBN: 0080530982
Category : Science
Languages : en
Pages : 975
Book Description
These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.