An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole PDF full book. Access full book title An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole by Gerard Scheepers. Download full books in PDF and EPUB format.

An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole

An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole PDF Author: Gerard Scheepers
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Developments regarding internal cooling techniques have allowed the operation of modern gas turbine engines at turbine inlet temperatures which exceed the metallurgical capability of the turbine blade. This has allowed the operation of engines at a higher thermal efficiency and lower specific fuel consumption. Modern turbine blade-cooling techniques rely on external film cooling to protect the outer surface of the blade from the hot gas path and internal cooling to remove thermal energy from the blade. Optimization of coolant performance and blade-life estimation require knowledge regarding the influence of cooling application on the blade inner and outer surface heat transfer. The following study describes a combined experimental and computational study of heat transfer augmentation near the entrance to a film-cooling hole. Steady-state heat transfer results were acquired by using a transient measurement technique in an 80 x actual rectangular channel, representing an internal cooling channel of a turbine blade. Platinum thin-film gauges were used to measure the inner surface heat transfer augmentation as a result of thermal boundary layer renewal and impingement near the entrance of a film-cooling hole. Measurements were taken at various suction ratios, extraction angles and wall temperature ratios with a main duct Reynolds number of 25? 103. A numerical technique, based on the resolution of the unsteady conduction equation, using a Crank-Nicholson scheme, was used to obtain the surface heat flux from the measured surface temperature history. Computational data was generated with the use of a commercial CFD solver.

An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole

An Experimental and Numerical Study of Heat Transfer Augmentation Near the Entrance to a Film Cooling Hole PDF Author: Gerard Scheepers
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Developments regarding internal cooling techniques have allowed the operation of modern gas turbine engines at turbine inlet temperatures which exceed the metallurgical capability of the turbine blade. This has allowed the operation of engines at a higher thermal efficiency and lower specific fuel consumption. Modern turbine blade-cooling techniques rely on external film cooling to protect the outer surface of the blade from the hot gas path and internal cooling to remove thermal energy from the blade. Optimization of coolant performance and blade-life estimation require knowledge regarding the influence of cooling application on the blade inner and outer surface heat transfer. The following study describes a combined experimental and computational study of heat transfer augmentation near the entrance to a film-cooling hole. Steady-state heat transfer results were acquired by using a transient measurement technique in an 80 x actual rectangular channel, representing an internal cooling channel of a turbine blade. Platinum thin-film gauges were used to measure the inner surface heat transfer augmentation as a result of thermal boundary layer renewal and impingement near the entrance of a film-cooling hole. Measurements were taken at various suction ratios, extraction angles and wall temperature ratios with a main duct Reynolds number of 25? 103. A numerical technique, based on the resolution of the unsteady conduction equation, using a Crank-Nicholson scheme, was used to obtain the surface heat flux from the measured surface temperature history. Computational data was generated with the use of a commercial CFD solver.

An Experimental and Numerical Study of the Effect of the Film to Mainstream Temperature Ratio on Film Cooling Heat Transfer

An Experimental and Numerical Study of the Effect of the Film to Mainstream Temperature Ratio on Film Cooling Heat Transfer PDF Author: John Russell Biddle
Publisher:
ISBN:
Category : Cooling
Languages : en
Pages : 584

Book Description


Experimental and Numerical Study of Endwall Film Cooling

Experimental and Numerical Study of Endwall Film Cooling PDF Author: Srikrishna Mahadevan
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Book Description
This research work investigates the thermal performance of a film-cooled gas turbine endwall under two different mainstream flow conditions. In the first part of the research investigation, the effect of unsteady passing wakes on a film-cooled pitchwise-curved surface (representing an endwall without airfoils) was experimentally studied for heat transfer characteristics on a time-averaged basis. The temperature sensitive paint technique was used to obtain the local temperatures on the test surface. The required heat flux input was provided using foil heaters. Discrete film injection was implemented on the test surface using cylindrical holes with a streamwise inclination angle of 35° and no compound angle relative to the mean approach velocity vector. The passing wakes increased the heat transfer coefficients at both the wake passing frequencies that were experimented. Due to the increasing film cooling jet turbulence and strong jet-mainstream interaction at higher blowing ratios, the heat transfer coefficients were amplified. A combination of film injection and unsteady passing wakes resulted in a maximum pitch-averaged and centerline heat transfer augmentation of [approximately equal to] 28% and 31.7% relative to the no wake and no film injection case.

Experimental Study of Heat Transfer Inside Film Cooling Hole Models

Experimental Study of Heat Transfer Inside Film Cooling Hole Models PDF Author: Faysal Baty
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 88

Book Description


Heat Transfer in Gas Turbines

Heat Transfer in Gas Turbines PDF Author: Bengt Sundén
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544

Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

A Full Coverage Film Cooling Study

A Full Coverage Film Cooling Study PDF Author: Justin Hodges
Publisher:
ISBN:
Category :
Languages : en
Pages : 118

Book Description
This thesis is an experimental and numerical full-coverage film cooling study. The objective of this work is the quantification of local heat transfer augmentation and adiabatic film cooling effectiveness for two full-coverage film cooling geometries. Experimental data was acquired with a scientific grade CCD camera, where images are taken over the heat transfer surface, which is painted with a temperature sensitive paint. The CFD component of this study served to evaluate how well the v2-f turbulence model predicted film cooling effectiveness throughout the array, as compared with experimental data. The two staggered arrays tested are different from one another through a compound angle shift after 12 rows of holes. The compound angle shifts from [beta]=-45° to [beta]=+45° at row 13. Each geometry had 22 rows of cylindrical film cooling holes with identical axial and lateral spacing (X/D=P/D=23). Levels of laterally averaged film cooling effectiveness for the superior geometry approach 0.20, where the compound angle shift causes a decrease in film cooling effectiveness. Levels of heat transfer augmentation maintain values of nearly h/h0=1.2. There is no effect of compound angle shift on heat transfer augmentation observed. The CFD results are used to investigate the detrimental effect of the compound angle shift, while the SST k-[omega] turbulence model shows to provide the best agreement with experimental results.

Experimental and Numerical Study of Supersonic Film Cooling

Experimental and Numerical Study of Supersonic Film Cooling PDF Author: B. Aupoix
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


A Numerical Study of Discrete-hole Film Cooling

A Numerical Study of Discrete-hole Film Cooling PDF Author: Mulugeta K. Berhe
Publisher:
ISBN:
Category :
Languages : en
Pages : 314

Book Description


A Numerical and Experimental Study of Flow and Heat Transfer from a Flush, Inclined Film Cooling Slot [microform]

A Numerical and Experimental Study of Flow and Heat Transfer from a Flush, Inclined Film Cooling Slot [microform] PDF Author: David M. (David Murray) Sinitsin
Publisher: National Library of Canada
ISBN:
Category : Cooling
Languages : en
Pages : 240

Book Description


Surface Measurements and Predictions of Full-coverage Film Cooling

Surface Measurements and Predictions of Full-coverage Film Cooling PDF Author: Greg Natsui
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Book Description
Full-coverage film cooling is investigated both experimentally and numerically. First, surface measurements local of adiabatic film cooling eeffectiveness and heat transfer augmentation for four different arrays are described. Reported next is a comparison between two very common turbulence models, Realizable k-[epsilon] and SST k-[omega], and their ability to predict local film cooling effectiveness throughout a full-coverage array. The objective of the experimental study is the quantification of local heat transfer augmentation and adiabatic film cooling effectiveness for four surfaces cooled by large, both in hole count and in non-dimensional spacing, arrays of film cooling holes. The four arrays are of two different hole-to-hole spacings (P/D = X/D = 14.5; 19.8) and two different hole inclination angles ([alpha] = 30°; 45°), with cylindrical holes compounded relative to the flow ([beta] = 45°) and arranged in a staggered configuration. Arrays of up to 30 rows are tested so that the superposition effect of the coolant film can be studied. In addition, shortened arrays of up to 20 rows of coolant holes are also tested so that the decay of the coolant film following injection can be studied. Levels of laterally averaged effectiveness reach values as high as [eta with line above]= 0.5, and are not yet at the asymptotic limit even after 20-30 rows of injection for all cases studied. Levels of heat transfer augmentation asymptotically approach values of h=h0 [almost equal to] 1.35 rather quickly, only after 10 rows. It is conjectured that the heat transfer augmentation levels off very quickly due to the boundary layer reaching an equilibrium in which the perturbation from additional film rows has reached a balance with the damping effect resulting from viscosity. The levels of laterally averaged adiabatic film cooling effectiveness far exceeding [eta with line above]= 0.5 are much higher than expected. The heat transfer augmentation levels off quickly as opposed to the film effectiveness which continues to rise (although asymptotically) at large row numbers. This ensures that an increased row count represents coolant well spent. The numerical predictions are carried out in order to test the ability of the two most common turbulence models to properly predict full-coverage film cooling. The two models chosen, Realizable k-[epsilon] (RKE) and Shear Stress Transport k-[omega] (SSTKW), are both two-equation models coupled with Reynolds Averaged governing equations which make several gross physical assumptions and require several empirical values. Hence, the models are not expected to provide perfect results. However, very good average values are seen tobe obtained through these simple models. Using RKE in order to model full-coverage filmcooling will yield results with 30% less error than selecting SSTKW.