An Automated Reliable Method for Two-dimensional Reynolds-Averaged Navier-Stokes Simulations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Automated Reliable Method for Two-dimensional Reynolds-Averaged Navier-Stokes Simulations PDF full book. Access full book title An Automated Reliable Method for Two-dimensional Reynolds-Averaged Navier-Stokes Simulations by James M. Modisette. Download full books in PDF and EPUB format.

An Automated Reliable Method for Two-dimensional Reynolds-Averaged Navier-Stokes Simulations

An Automated Reliable Method for Two-dimensional Reynolds-Averaged Navier-Stokes Simulations PDF Author: James M. Modisette
Publisher:
ISBN:
Category :
Languages : en
Pages : 180

Book Description
The development of computational fluid dynamics algorithms and increased computational resources have led to the ability to perform complex aerodynamic simulations. Obstacles remain which prevent autonomous and reliable simulations at accuracy levels required for engineering. To consider the solution strategy autonomous and reliable, high quality solutions must be provided without user interaction or detailed previous knowledge about the flow to facilitate either adaptation or solver robustness. One such solution strategy is presented for two-dimensional Reynolds-averaged Navier-Stokes (RANS) flows and is based on: a higher-order discontinuous Galerkin finite element method which enables higher accuracy with fewer degrees of freedom than lower-order methods; an output-based error estimation and adaptation scheme which provides quantifiable measure of solution accuracy and autonomously drives toward an improved discretization; a non-linear solver technique based on pseudo-time continuation and line-search update limiting which improves the robustness for solutions to the RANS equations; and a simplex cut-cell mesh generation which autonomously provides higher-order meshes of complex geometries. The simplex cut-cell mesh generation method presented here extends methods previously developed to improve robustness with the goal of RANS simulations. In particular, analysis is performed to expose the impact of small volume ratios between arbitrarily cut elements on linear system conditioning and solution quality. Merging of the small cut element into its larger neighbor is identified as a solution to alleviate the consequences of small volume ratios. For arbitrarily cut elements randomness in the algorithm for generating integration rules is identified as a limiting factor for accuracy and recognition of canonical element shapes are introduced to remove the randomness. The cut-cell method is linked with line-search based update limiting for improved non-linear solver robustness and Riemannian metric based anisotropic adaptation to efficiently resolve anisotropic features with arbitrary orientations in RANS flows. A fixed-fraction marking strategy is employed to redistribute element areas and steps toward meshes which equidistribute elemental errors at a fixed degree of freedom. The benefit of the higher spatial accuracy and the solution efficiency (defined as accuracy per degree of freedom) is exhibited for a wide range of RANS applications including subsonic through supersonic flows. The higher-order discretizations provide more accurate solutions than second-order methods at the same degree of freedom. Furthermore, the cut-cell meshes demonstrate comparable solution efficiency to boundary-conforming meshes while significantly decreasing the burden of mesh generation for a CFD user.

An Automated Reliable Method for Two-dimensional Reynolds-Averaged Navier-Stokes Simulations

An Automated Reliable Method for Two-dimensional Reynolds-Averaged Navier-Stokes Simulations PDF Author: James M. Modisette
Publisher:
ISBN:
Category :
Languages : en
Pages : 180

Book Description
The development of computational fluid dynamics algorithms and increased computational resources have led to the ability to perform complex aerodynamic simulations. Obstacles remain which prevent autonomous and reliable simulations at accuracy levels required for engineering. To consider the solution strategy autonomous and reliable, high quality solutions must be provided without user interaction or detailed previous knowledge about the flow to facilitate either adaptation or solver robustness. One such solution strategy is presented for two-dimensional Reynolds-averaged Navier-Stokes (RANS) flows and is based on: a higher-order discontinuous Galerkin finite element method which enables higher accuracy with fewer degrees of freedom than lower-order methods; an output-based error estimation and adaptation scheme which provides quantifiable measure of solution accuracy and autonomously drives toward an improved discretization; a non-linear solver technique based on pseudo-time continuation and line-search update limiting which improves the robustness for solutions to the RANS equations; and a simplex cut-cell mesh generation which autonomously provides higher-order meshes of complex geometries. The simplex cut-cell mesh generation method presented here extends methods previously developed to improve robustness with the goal of RANS simulations. In particular, analysis is performed to expose the impact of small volume ratios between arbitrarily cut elements on linear system conditioning and solution quality. Merging of the small cut element into its larger neighbor is identified as a solution to alleviate the consequences of small volume ratios. For arbitrarily cut elements randomness in the algorithm for generating integration rules is identified as a limiting factor for accuracy and recognition of canonical element shapes are introduced to remove the randomness. The cut-cell method is linked with line-search based update limiting for improved non-linear solver robustness and Riemannian metric based anisotropic adaptation to efficiently resolve anisotropic features with arbitrary orientations in RANS flows. A fixed-fraction marking strategy is employed to redistribute element areas and steps toward meshes which equidistribute elemental errors at a fixed degree of freedom. The benefit of the higher spatial accuracy and the solution efficiency (defined as accuracy per degree of freedom) is exhibited for a wide range of RANS applications including subsonic through supersonic flows. The higher-order discretizations provide more accurate solutions than second-order methods at the same degree of freedom. Furthermore, the cut-cell meshes demonstrate comparable solution efficiency to boundary-conforming meshes while significantly decreasing the burden of mesh generation for a CFD user.

Performance of Near-wall Modeling Techniques in Reynolds-averaged Navier Stokes Simulations

Performance of Near-wall Modeling Techniques in Reynolds-averaged Navier Stokes Simulations PDF Author: Michael J. Yaworski
Publisher:
ISBN:
Category :
Languages : en
Pages : 75

Book Description


Engineering Turbulence Modelling and Experiments - 4

Engineering Turbulence Modelling and Experiments - 4 PDF Author: D. Laurence
Publisher: Elsevier
ISBN: 0080530982
Category : Science
Languages : en
Pages : 975

Book Description
These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.

Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 914

Book Description


Hydro-Environmental Analysis

Hydro-Environmental Analysis PDF Author: James L. Martin
Publisher: CRC Press
ISBN: 1138000868
Category : Science
Languages : en
Pages : 5742

Book Description
Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.

Computational Flight Testing

Computational Flight Testing PDF Author: Norbert Kroll
Publisher: Springer Science & Business Media
ISBN: 3642388779
Category : Technology & Engineering
Languages : en
Pages : 287

Book Description
This book reports on the German research initiative ComFliTe (Computational Flight Testing), the main goal of which was to enhance the capabilities of and tools for numerical simulation in flight physics to support future aircraft design and development. The initiative was coordinated by the German Aerospace Center (DLR) and promoted collaboration between the aircraft industry and academia. Activities focused on improving physical modeling for separated flows, developing advanced numerical algorithms for series computations and sensitivity predictions, as well as surrogate and reduced order modeling for aero data production and developing robust fluid-, structure- and flight mechanics coupling procedures. Further topics included more efficient handling of aircraft control surfaces and improving simulation methods for maneuvers, such as gust encounter. The important results of this three-year initiative were presented during the ComFliTe closing symposium, which took place at the DLR in Braunschweig, Germany, on 11-12 June 2012. Computational Flight Testing addresses both students and researchers in the areas of mathematics, numerical simulation and optimization methods, as well as professionals in aircraft design working at the forefront of their field.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Book Description


International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 974

Book Description


Development of a Stable Numerical Method for the Two Dimensional Navier-Stokes Equations

Development of a Stable Numerical Method for the Two Dimensional Navier-Stokes Equations PDF Author: Lisa Danielle Hugdahl
Publisher:
ISBN:
Category : Navier-Stokes equations
Languages : en
Pages : 116

Book Description


MEGAFLOW - Numerical Flow Simulation for Aircraft Design

MEGAFLOW - Numerical Flow Simulation for Aircraft Design PDF Author: Norbert Kroll
Publisher: Springer Science & Business Media
ISBN: 3540323821
Category : Technology & Engineering
Languages : en
Pages : 311

Book Description
The aerospace industry increasingly relies on advanced numerical simulation tools in the early design phase. This volume provides the results of a German initiative which combines many of the CFD development activities from the German Aerospace Center (DLR), universities, and aircraft industry. Numerical algorithms for structured and hybrid Navier-Stokes solvers are presented in detail. The capabilities of the software for complex industrial applications are demonstrated.